Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T15:30:50.424Z Has data issue: false hasContentIssue false

Analysis on Root Systems

Published online by Cambridge University Press:  20 November 2018

Amédée Debiard
Affiliation:
Université Paris XIII, Paris, France
Bernard Gaveau
Affiliation:
Université Paris VI, Paris, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A great part of mathematical analysis relies directly on the methods of separation of variables and on the successive reduction of several variables problems to one-dimensional equations and to the theory of classical special functions; for example, the theory of elliptic or parabolic equations with regular coefficients (even with non constant coefficients) can be done because we know explicitly the fundamental solutions of the Laplace operator or of the heat equation; these fundamental solutions are functions of one variable; pseudodifferential or parametrices methods are thus basically small perturbations of an explicitly known problem in one variable.

On the other hand, there are many problems which are not of this type: they are related to the questions of operators with singular coefficients and to the global behaviour of the solutions; in that case, the local model cannot be reduced to a one variable problem but is fundamentally a several variables problem which cannot be treated in a detailed way by one variable methods or perturbation analysis of a one variable problem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Araki, S., On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univer. 13 (1962), 131.Google Scholar
2. Berezin, F., Laplace operators on semisimple Lie groups,, Amer. Math. Soc. Transi. 21 (1962), 239338.Google Scholar
3. Debiard, A., Polynōmes de Tchébychev et de Jacobi dans un espace euclidien de dimension p, C.R. Acad. Sci. Paris 296 (1983), 529532.Google Scholar
4. Debiard, A., Espaces Hp au dessus de l'espace hermitien hyperbolique de C n (n > 1) II, J. Funct. Analysis 40 (1981), 185265.Google Scholar
5. Debiard, A., Comparaison des espaces Hp géométrique et probabilistes au dessus de Vespace Hermitien hyperbolique,, Bull. Sci. Maths. 103 (1979), 305351.Google Scholar
6. Debiard, A., Système différentiel hypergéométrique de type BC,, to appear..Google Scholar
7. Debiard, A. and Gaveau, B., Quantification du réseau de Toda ouvert,, C.R. Acad. Sci. Paris 301 (1985), 943946.Google Scholar
8. Debiard, A., Gaveau, B. and Mazet, E., Théorèmes de comparaison en géométrie riemannienne, Publi. R.I.M.S. Kyoto 12 (1976), 390425.Google Scholar
9. Dowker, J., Quantum mechanics on group space and Huygens’ principle,, Annals of Physics (NY) 62 (1971), 361382.Google Scholar
10. Dynkin, E., Non negative eigenfunctions of the Laplace-Beltrami operator and hrownian motion in certain symmetric spaces,, Dokl. Akad. Nauk SSSR 141 (1961), 288291.Google Scholar
11. Gangolli, R., Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces,, Acta. Math 121 (1968), 151192.Google Scholar
12. Gaveau, B., Principe de moimdre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,, Acta. Math 139 (1977), 95153.Google Scholar
13. Gaveau, B. and Laville, G., Particules chargées dans un champ magnétique et fonctions holomorphes,, Springer Lecture Notes 919 (1981), 123130.Google Scholar
14. Gaveau, B. and Schulman, L., Explicit time dependent Schrôdinger propagator,, J. Phys. (A) 79(1986), 18331846.Google Scholar
15. Helgason, S., Differential geometry and symmetric spaces, (Acad. Press, 1962).Google Scholar
16. Karlin, S. and McGregor, J., Determinant of orthogonal polynomials,, Bull. Amer. Math. Soc. 65(1962), 204209.Google Scholar
17. Karpelevič, F., Geometry of geodesies and eigenfunctions of the Laplace-Beltrami operator on symmetric spaces,, Trudy Moscow Math. Obsv. 14 (1965), 48185.Google Scholar
18. Koornwinder, T. H., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I, II,, Proc. Kon Ned Akad. V Wet (Amsterdam) 77 (1974), 4866.Google Scholar
19. Koornwinder, T. H., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators III, IV,, Proc. Kon Ned Akad. V Wet (Amsterdam) 77 (1974), 357381.Google Scholar
20. Landau, L. and Lifschitz, E., Mécanique quantique, (1983)..Google Scholar
21. Lohoué, N. and Richmeyer, N., Die resolvents von, A auf symmetrischen raiimen von michtkompakten typ, Comm. Math. Helvetici 57 (1982), 445468.Google Scholar
22. Malliavin, M. P. and Malliavin, P., Factorisation et lois limites de la diffusion horizontale au dessus d'un espace symmétrique, Lee. Note 404, 164217.Google Scholar
23. McKean, H. P., An upper bound to the spectrum of A on a manifold of negative curvature,, J. of Diff. Geometry 4 (1970), 359366.Google Scholar
24. Nikiforov, A. and Ouvarov, V., Eléments de la théorie des fonctions spéciales, (1976)..Google Scholar
25. Olshanetsky, M. A. and Perelomov, A. M., Explicit solutions of classical generalized Toda models,, Inv. Math. 54 (1979), 261269.Google Scholar
26. Olshanetsky, M. A. and Perelomov, A. M., Quantum systems related to root systems, and radial parts of Laplace operators, Funkt. Anal. i. Priloz 12 (1978), 5765.Google Scholar
27. Riesz, M., L'intégrale de Riemann Liouville et le problème de Cauchy,, Acta. Math 81 (1949), 195.Google Scholar
28. Schulman, L., A path integral for spin, Phys. Rev. 176 (1968), 15581569.Google Scholar
29. Schulman, L., Techniques and applications of path integrals, (J. Wiley, N.Y., 1981)..Google Scholar
30. Sprinkhuisen-Kuyper, I. G., Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, Siam. J. Math. Anal. 7 (1976), 501518.Google Scholar
31. Suguira, M., Conjugate classes of Cartan subalgebra in real semisimple Lie algebras, J. Math. Soc. Japan (1959), 374434.Google Scholar
32. Weyl, H., The classical groups and their representations, (Princeton Univ. Press, 1952).Google Scholar