Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T07:11:49.819Z Has data issue: false hasContentIssue false

Algebras Over Dedekind Domains

Published online by Cambridge University Press:  20 November 2018

Joseph A. Wehlen*
Affiliation:
Ohio University, Athens, Ohio
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is two-fold : first, to show that Dedekind domains satisfy a generalization of the Wedderburn-Mal'cev Theorem and, secondly, to classify certain types of finitely generated projective algebras over a Dedekind domain.

With respect to the first problem, E. C. Ingraham has shown that a Dedekind domain R is an inertial coefficient ring (IC-ring) if and only if R has zero radical or R is a local Hensel ring.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1973

References

1. Auslander, M. and Buchsbaum, D., On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749765.Google Scholar
2. Auslander, M. and Goldman, O., Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 124.Google Scholar
3. Chase, S. U., A generalization of the ring of triangular matrices, Nagoya Math. J. 18 (1961), 1325.Google Scholar
4. Curtis, C. W., Non-commutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945955.Google Scholar
5. Demeyer, F. and Ingraham, E. C., Separable algebras over commutative rings, Lecture Notes in Mathematics No. 181 (Springer-Verlag, New York, 1971).Google Scholar
6. Divinsky, N. J., Rings and radicals (Univ. of Toronto Press, Toronto, 1965).Google Scholar
7. Eilenberg, S., Algebras of cohomologically finite dimension, Comment. Math. Helv. 28 (1954), 310319.Google Scholar
8. Harada, M., Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966), 463484.Google Scholar
9. Hochschild, G., Cohomology groups of an associative algebra, Ann. of Math. 46 (1945), 5867.Google Scholar
10. Ingraham, E. C., Inertial subalgebras of algebras over commutative rings, Trans. Amer. Math. Soc. 124 (1966), 7793.Google Scholar
11. Ingraham, E. C., Inertial subalgebras of complete algebras, J. Algebra 15 (1970), 112.Google Scholar
12. Jacobson, N., Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37 (Amer. Math. Soc, Providence, R.I., 1964).Google Scholar
13. Jans, J. and Nakayama, T., On the dimension of modules and algebras VII, algebras with finite-dimensional residue algebras, Nagoya Math. J. 11 (1957), 6776.Google Scholar
14. Janusz, G. J., Separable algebras over commutative rings, Trans Amer. Math. Soc. 122 (1966), 461479.Google Scholar
15. Silver, L., Noncommutative localizations and applications, J. Algebra 7 (1967), 4476.Google Scholar
16. Wehlen, J. A., Algebras of finite cohomological dimension, Nagoya Math. J. 45 (1971), 127135.Google Scholar
17. Wehlen, J. A., Cohomological dimension and global dimension of algebras, Proc. Amer. Math. Soc. 32 (1972), 7580.Google Scholar
18. Wehlen, J. A., Triangular matrix algebras over Hensel rings, Proc. Amer. Math. Soc. 37 (1973), 6974.Google Scholar