Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:42:58.988Z Has data issue: false hasContentIssue false

RESISTANCE TO PYRAZOPHOS IN THE SERPENTINE LEAFMINER LIRIOMYZA TRIFOLII (BURGESS) (DIPTERA: AGROMYZIDAE) IN ONTARIO GREENHOUSES

Published online by Cambridge University Press:  31 May 2012

A.B. Broadbent
Affiliation:
Agriculture Canada Research Station, Vieland Station, Ontario, Canada L0R 2E0
D.J. Pree
Affiliation:
Agriculture Canada Research Station, Vieland Station, Ontario, Canada L0R 2E0

Abstract

In 1986 a greenhouse population of Liriomyza trifolii (Burgess) was shown to be highly resistant (155-fold at LC50) to the organophosphorus compound pyrazophos. However in 1987, the same population had only 35–40% resistant individuals remaining. A survey in 1986 of five other greenhouses reporting leafminer control failures indicated three other resistant populations in southern Ontario. Resistance was not affected by the addition of the synergists diethyl maleate or triphenyl phosphate to pyrazophos. Cross-resistance to the phosphorothioate insecticides demeton, chlorpyrifos, and triazophos was indicated.

Résumé

En 1986, on a découvert qu’une population en serre de Liriomyza trifolii (Burgess) était très résistante (155 fois à la CL50) à l’insecticide organophosphoré pyrazophos. Cependant en 1987, il ne restait seulement que 35–40% d’insectes résistants dans la population. En 1986, une enquête auprès de cinq autres serres où l’on avait signalé une lutte inefficace contre les mineuses a révélé la présence de trois autres populations résistantes dans le sud de l’Ontario. L’addition de produits synergiques comme le maléate de diéthyle ou le phosphate de triphényle au pyrazophos n’a pas eu d’effet sur la résistance. On a signalé une résistance croisée aux phosphorothioates déméton, chlorpyrifos et triazophos.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Broadbent, A.B. 1983. Liriomyza trifolii on chrysanthemums in Ontario greenhouses. pp. 90–100 in Poe, S.L. (Ed.), Proceedings of the Third Annual Industry Conference on Leafminer, San Diego, CA. 216 pp.Google Scholar
Brown, A.W.A., and Pal, R.. 1971. pp. 70–71 in Insecticide Resistance in Arthropods. World Health Organization Monograph 38, 2nd ed., Geneva. 491 pp.Google Scholar
Engineering and Statistical Research Institute. 1986. Guide to services, systems and consulting directorate. Agriculture Canada, Ottawa.Google Scholar
Finney, D.J. 1971. Probit Analysis, 3rd ed. Cambridge University Press, London. 333 pp.Google Scholar
Halliday, W.R., and Georghiou, G.P.. 1985. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. econ. Ent. 78: 762767.CrossRefGoogle Scholar
Hemingway, J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic. Biochem. Physiol. 17: 149155.CrossRefGoogle Scholar
Keil, C.B., and Parrella, M.P.. 1983. Liriomyza trifolii on chrysanthemums and celery: managing an insecticide resistant population. pp. 162–167 in Poe, S.L. (Ed.), Proceedings of the Third Annual Industry Conference on Leafminer, San Diego, CA. 216 pp.Google Scholar
Leibee, G.I. 1981. Insecticidal control of Liriomyza spp. on vegetables. pp. 216–220 in Schuster, D.J. (Ed.), Proceedings of the IFAS-Industry Conference on Biology and Control of Liriomyza Leafminers, University of Florida. 235 pp.Google Scholar
Neter, J., Wasserman, W., and Kutner, M.H.. 1983. Applied Linear Regression Models. R.D. Irwin, Inc., Home-wood, IL. 547 pp.Google Scholar
Parrella, M.P. 1983. Evaluations of selected insecticides for control of permethrin-resistant Liriomyza trifolii (Diptera: Agromyzidae) on chrysanthemum. J. econ. Ent. 76: 14601464.Google Scholar
Pree, D.J. 1987. Inheritance and management of cyhexatin and dicofol resistance in the European red mite (Acari: Tetranychidae). J. econ. Ent. 80: 11061112.Google Scholar
Pree, D.J., Hagley, E.A.C., Simpson, C.M., and Hikichi, A.. 1980. Resistance of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae) to organophosphorous insecticides in southern Ontario. Can. Ent. 112: 469474.Google Scholar
Pree, D.J., Marshall, D.B., and Archibald, D.E.. 1986. Resistance to pyrethroid insecticides in the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae), in southern Ontario. J. econ. Ent. 79: 318322.Google Scholar
Roush, R.T., Combs, R.L., Randolph, T.C., Macdonald, J., and Hawkins, J.A.. 1986. Inheritance and effective dominance of pyrethroid resistance in the horn fly (Diptera: Muscidae). J. econ. Ent. 79: 11781182.Google Scholar
SAS Users Guide. 1985. Statistics Version 5 Edition. SAS Institute Inc., Cary, NC. pp. 575606.Google Scholar
Welling, W., and De Vries, J.W.. 1985. Synergism of organophosphorus insecticides by diethyl maleate and related compounds in houseflies. Pestic. Biochem. Physiol. 23: 358369.CrossRefGoogle Scholar