Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T02:12:03.389Z Has data issue: false hasContentIssue false

OVIPOSITION PREFERENCE OF A POLYPHAGOUS MOTH, THE OBLIQUEBANDED LEAFROLLER, CHORISTONEURA ROSACEANA (HARRIS) (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Y. Carrière
Affiliation:
Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada H3A 1B1
S. Paré
Affiliation:
Abbott Laboratories, Ltd., PO Box 8617, Station A, Montreal, Quebec, Canada H3C 3P3
B.D. Roitberg
Affiliation:
Center for Pest Management and Behavioural Ecology Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

The daily pattern of oviposition, the rank order of oviposition preference for three potential hosts, and the effect of experience on oviposition preference were investigated under natural abiotic conditions in the obliquebanded leafroller, Choristoneura rosaceana. Females from the two adult cohorts occurring seasonally oviposited between 0400 and 2400 hours, with peak oviposition around 2000 hours. Both non-choice and choice oviposition trials revealed that the apple and snowberry hosts were preferred over wild rose. Oviposition preference resulted in delays in laying on the less preferred host, but seemed to have no effect on clutch size. Females caged with exclusive access to one of the three hosts appeared to have similar lifetime fecundity or longevity. A first oviposition on wild rose resulted in a delay in laying a second clutch on that host, which suggests the presence of aversive learning that could function to reduce the liklihood of laying successive clutches on a less preferred host. A first oviposition on the apple host, however, seemed to have no effect on further oviposition preference. Hence, it appears that learning would not function specifically to concentrate foraging of the females within apple orchards.

Résumé

Le moment de la ponte au cours de la journée, le rang de préférence de trois hôtes potentiels et l’effet de l’expérience sur le choix d’un site de ponte ont été étudiés dans des conditions abiotiques naturelles chez la Tordeuse à bandes obliques, Choristoneura rosaceana. Les femelles des deux cohortes annuelles d’adultes pondaient entre 0400 et 2400 heures et les efforts de ponte étaient concentrés autour de 2000 heures. Les expériences de ponte avec choix et sans choix ont démontré que les insectes préféraient pondre sur les pommiers et les shepherdies plutôt que sur les églantiers. Ces préférences ont donné lieu à des retards dans la ponte sur l’hôte le moins apprécié, mais ces retards n’affectaient pas le nombre d’oeufs pondus. Les femelles en cage avec accès exclusif à un type d’hôte semblaient avoir toutes la même fécondité globale et la même longévité. Une première ponte sur des églantiers a eu pour effet d’entraîner un retard dans la seconde ponte sur cet hôte, ce qui semble indiquer que l’existence d’un apprentissage malheureux peut réduire la probabilité de pontes consécutives sur un hôte moins apprécié. En revanche, une première ponte sur un pommier semble être restée sans effet sur les pontes subséquentes. Il semble donc que l’apprentissage ne résulterait pas nécessairement en une concentration des efforts de recherche de nourriture des femelles dans les vergers de pommiers.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliniazee, M.T. 1986. Seasonal history, adult activity and damage of the obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae), in filbert orchards. The Canadian Entomologist 118: 353361.CrossRefGoogle Scholar
Carrière, Y. 1992 a. Host plant exploitation within a population of a generalist herbivore, Choristoneura rosaceana. Entomologia Experimentalis et Applicata 65: 110.CrossRefGoogle Scholar
Carrière, Y. 1992 b. Larval dispersal from potential hosts within a population of a generalist herbivore, Choristoneura rosaceana. Entomologia Experimentalis et Applicata 65: 1119.Google Scholar
Carrière, Y., Deland, J.-P., Roff, D.A., and Vincent, C.. 1994. Life history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society of London, B 258: 3540.Google Scholar
Carrière, Y., Roff, D.A., and Deland, J.-P.. 1995. The joint evolution of diapause and insecticide resistance: A test of an optimality model. Ecology 76: 14971505.Google Scholar
Carrière, Y., and Roitberg, B.D.. 1994. Trade-offs in performance on different hosts within a population of a generalist herbivore, Choristoneura rosaceana (Lepidoptera: Tortricidae). Entomologia Experimentalis et Applicata 72: 173180.Google Scholar
Carrière, Y., and Roitberg, B.D. 1995 a. Evolution of host-selection behavior in insect herbivores: Genetic variation and covariation in host acceptance within and between populations of the obliquebanded leafroller, Choristoneura rosaceana (Family: Tortricidae). Heredity 74: 357368.CrossRefGoogle Scholar
Carrière, Y., and Roitberg, B.D. 1995 b. Optimality modeling and quantitative genetics as alternatives to study the evolution of foraging behaviors in insect herbivores. Evolutionary Ecology. In press.Google Scholar
Chapman, P.J., and Lienk, S.E.. 1971. Tortricid Fauna of Apple in New-York; Including an Account of Apple Occurrence in the State, especially as a Naturalised Plant. New York State Agriculture Experiment Station (Geneva, N.Y.) Special Publication. 128 pp.Google Scholar
Chapman, P.J., Lienk, S.E., and Dean, R.W.. 1968. Bionomics of Choristoneura rosaceana. Annals of the Entomological Society of America 61: 285290.CrossRefGoogle Scholar
Fox, L.R., and Morrow, P.A.. 1981. Specialization: Species property or local phenomenon? Science 211: 887893.Google Scholar
Gillespie, D.R. 1982. Introduced and Native Leafrollers (Lepidoptera: Tortricidae) on Berry Crops in the Lower Fraser Valley, B.C. Ph.D. thesis, Simon Fraser University, Bumaby, B.C.Google Scholar
Jaenike, J. 1983. Induction of host preference in Drosophila melanogaster. Oecologia 58: 320325.CrossRefGoogle ScholarPubMed
Jaenike, J. 1990. Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21: 243273.CrossRefGoogle Scholar
Jaenike, J., and Papaj, D.R.. 1992. Behavioral plasticity and patterns of host use by insects. pp. 245–264 in Roitberg, B.D., and Isman, M.B. (Eds.), Insect Chemical Ecology: An Evolutionary Approach. Chapman and Hall, New York, NY.Google Scholar
Keathler, F., Pree, D.J., and Brown, A.W.. 1982. HCN: A feeding deterent in peach to the oblique-banded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America 75: 568573.CrossRefGoogle Scholar
Maltais, J., Régnière, J., Cloutier, C., Hébert, C., and Perry, D.F.. 1989. Seasonal biology of Metheorus trachynotus Vier. (Hymenoptera: Braconidae) and of its overwintering host Choristoneura rosaceana (Harr.) (Lepidoptera: Tortricidae). The Canadian Entomologist 121: 745756.CrossRefGoogle Scholar
Minkenberg, O.P.J.M., Tatar, M., and Rosenheim, J.A.. 1992. Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65: 134142.CrossRefGoogle Scholar
Onstad, D.W., Reissig, W.H., and Shoemaker, C.A.. 1985. Influence of apple cultivar, tree phenology, and leaf quality on the development and mortality of Choristoneura rosaceana (Lepidoptera: Tortricidae). The Canadian Entomologist 118: 123132.CrossRefGoogle Scholar
Otte, D., and Joern, A.. 1977. On feeding patterns in desert grasshoppers and the evolution of specialized diets. Proceedings of the Academy of Science of Philadelphia 128: 89126.Google Scholar
Papaj, D.R., and Prokopy, R.J.. 1989. Ecological and evolutionary aspects of learning in phytophagous insects. Annual Review of Entomology 34: 315350.CrossRefGoogle Scholar
Papaj, D.R., and Rausher, M.D.. 1983. Individual variation in host location by phytophagous insects. pp. 77–124 in Ahamad, S. (Ed.), Herbivorous Insects. Academic Press, New York, NY.Google Scholar
Pilson, D., and Rausher, M.D.. 1988. Cluch size adjustment by a swallow tail butterfly. Nature 333: 361363.Google Scholar
Prokopy, R.J., Averill, A.L., Cooley, S.S., and Roitberg, C.A.. 1982. Associative learning in egglaying site selection by apple maggot flies. Science 218: 7677.CrossRefGoogle ScholarPubMed
Prokopy, R.J., and Fletcher, B.S.. 1987. The role of adult learning in the acceptance of host fruit for egglaying by the queensland fruit fly, Dacus tryoni. Entomologia Experimentalis et Applicata 45: 259263.Google Scholar
Prokopy, R.J., Papaj, D.R., Cooley, S.S., and Kallet, C.. 1986. On the nature of learning in oviposition site acceptance be apple maggot flies. Animal Behaviour 34: 98107.Google Scholar
Reissig, W.H. 1978. Biology and control of the obliquebanded leafroller on apples. Journal of Economic Entomology 71: 804809.CrossRefGoogle Scholar
Reissig, W.H., Stanley, B.H., and Hebding, H.E.. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 79: 329333.CrossRefGoogle Scholar
Rice, R.E., Flaherty, D.L., and Jones, R.A.. 1988. The obliquebanded leafroller a new pest in pistachios? California Agriculture 42: 2729.Google Scholar
Roff, D.A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60: 389421.Google Scholar
SAS Institute Inc. 1988. SAS/STAT User's Guide, Release 6.03 edition. Cary, NC.Google Scholar
Simeone, J.B., and Eugelken, J.H.. 1959. Injury to coniferous tree seedlings by the obliquebanded leafroller. Journal of Forestry 57: 492494.Google Scholar
Singer, M.C. 1986. The definition and measurement of oviposition preference in plant-feeding insects. pp. 65–94 in Miller, T.A., and Miller, J. (Eds.), Insect–Plant Interactions. Springer-Verlag, New York, NY.Google Scholar
Thompson, J.N. 1993. Preference hierarchies and the origin of geographic specialization in host use in swallowtail butterflies. Evolution 47: 15851594.CrossRefGoogle ScholarPubMed
Thompson, J.N., and Pellmyr, O.. 1991. Evolution of oviposition behavior and host preference in Lepidoptera. Annual Review of Entomology 36: 6589.CrossRefGoogle Scholar
Wiklund, C. 1981. Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects of the hierarchy of oviposition preferences. Oikos 36: 163170.Google Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Canada Inc., Toronto, Ont.718 pp.Google Scholar