Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:20:33.801Z Has data issue: false hasContentIssue false

Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America

Published online by Cambridge University Press:  08 January 2018

S. B. Archibald*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts, 02138, United States of America Royal British Columbia Museum, 675 Bellvelle Street, Victoria, British Columbia, V8W 9W2, Canada
Alexandr P. Rasnitsyn
Affiliation:
A.A. Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow 117647, Russia Invertebrate Palaeontology Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
Denis J. Brothers
Affiliation:
School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg), Private Bag X01, Scottsville, 3209, South Africa
Rolf W. Mathewes
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
*
1Corresponding author (e-mail: [email protected])

Abstract

Most major modern families of Hymenoptera were established in the Mesozoic, but the diversifications within ecologically key trophic guilds and lineages that significantly influence the character of modern terrestrial ecosystems – bees (Apiformes), ants (Formicidae), social Vespidae, parasitoids (Ichneumonidae), and phytophagous Tenthredinoidea – were previously known to occur mostly in the middle to late Eocene. We find these changes earlier, seen here in the early Eocene Okanagan Highlands fossil deposits of western North America. Some of these may have occurred even earlier, but have been obscured by taphonomic processes. We provide an overview of the Okanagan Highlands Hymenoptera to family level and in some cases below that, with a minimum of 25 named families and at least 30 when those tentatively assigned or distinct at family level, but not named are included. Some are poorly known as fossils (Trigonalidae, Siricidae, Peradeniidae, Monomachidae), and some represent the oldest confirmed occurrences (Trigonalidae, Pompilidae, Sphecidae sensu stricto, Peradeniidae, Monomachidae, and possibly Halictidae). Some taxa previously thought to be relictual or extinct by the end of the Cretaceous (Angarosphecidae, Archaeoscoliinae, some Diapriidae) are present and sometimes abundant in the early Eocene. Living relatives of some taxa are now present in different climate regimes or on different continents.

Type
Biodiversity & Evolution
Copyright
© Entomological Society of Canada 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Michael Sharkey

References

Achterberg, C.V. 2006. European species of the genus Helorus Latreille (Hymenoptera: Heloridae), with description of a new species from Sulawesi (Indonesia). Zoologische Mededelingen, 80: 112.Google Scholar
Aguiar, A.P., Deans, A.R., Engel, M.S., Forshage, M., Huber, J.T., Jennings, J.T., et al. 2013. Order Hymenoptera. In Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Edited by Z.-Q. Zhang. Zootaxa, 3703: 5162.Google Scholar
Antropov, A.V., Belokobylskij, S.A., Compton, S.G., Dlussky, G.M., Khalaim, A.I., Kolyada, V.A., et al. 2014. The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the Insect Limestone (late Eocene) of the Isle of Wight, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104: 335446.Google Scholar
Archibald, S.B. 2005. New Dinopanorpidae (Insecta: Mecoptera) from the Eocene Okanagan Highlands (British Columbia, Canada; Washington State, USA). Canadian Journal of Earth Sciences, 42: 119136.CrossRefGoogle Scholar
Archibald, S.B. 2007. Climate and species diversity: the Eocene Okanagan Highlands insect view. Volumes 1–2. Ph.D. thesis. Harvard University, Cambridge, Massachusetts, United States of America.Google Scholar
Archibald, S.B. 2009. New Cimbrophlebiidae (Insecta: Mecoptera) from the early Eocene at McAbee, British Columbia, Canada and Republic, Washington, USA. Zootaxa, 2249: 5162.Google Scholar
Archibald, S.B., Bossert, W.H., Greenwood, D.R., and Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36: 374398.Google Scholar
Archibald, S.B., Cover, S.D., and Moreau, C.S. 2006. Bulldog ants of the Eocene Okanagan Highlands, and the history of the subfamily (Hymenoptera: Formicidae: Myrmeciinae). Annals of the Entomological Society of America, 99: 487523.Google Scholar
Archibald, S.B. and Farrell, B.D. 2003. Wheeler’s dilemma. Acta Zoologica Cracoviensia, 46: 1723. (supplement: fossil insects).Google Scholar
Archibald, S.B., Greenwood, D.R., and Mathewes, R.W. 2013. Seasonality, montane beta diversity, and Eocene insects: testing Janzen’s dispersal hypothesis in an equable world. Palaeogeography, Palaeoclimatology, Palaeoecology, 371: 18.Google Scholar
Archibald, S.B., Greenwood, D.R., Smith, R.Y., Mathewes, R.W., and Basinger, J.F. 2011a. Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38: 155164.Google Scholar
Archibald, S.B., Johnson, K.R., Mathewes, R.W., and Greenwood, D.R. 2011b. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proceedings of the Royal Society B, 278: 36793686.Google Scholar
Archibald, S.B. and Makarkin, V.N. 2006. Tertiary giant lacewings (Neuroptera: Polystoechotidae) revision and description of new taxa from western North America and Denmark. Journal of Systematic Palaeontology, 4: 119155, 307 (errata).Google Scholar
Archibald, S.B. and Mathewes, R.W. 2000. Early Eocene insects from Quilchena, British Columbia and their paleoclimatic implications. Canadian Journal of Zoology, 78: 14411462.Google Scholar
Archibald, S.B., Morse, G.E., Greenwood, D.R., and Mathewes, R.W. 2014. Fossil palm beetles refine upland winter temperatures in the early Eocene Climatic Optimum. Proceedings of the National Academy of Sciences of the United States of America, 111: 80958100.Google Scholar
Archibald, S.B. and Rasnitsyn, A.P. 2015. New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America. The Canadian Entomologist, 148: 209228.Google Scholar
Archibald, S.B., Rasnitsyn, A.P., and Akhmetiev, M.A. 2005. The ecology and distribution of Cenozoic Eomeropidae (Mecoptera), and a new species of Eomerope Cockerell from the early Eocene McAbee locality, British Columbia, Canada. Annals of the Entomological Society of America, 98: 503514.Google Scholar
Aria, C., Perrichot, V., and Nel, A. 2011. Fossil Ponerinae (Hymenoptera: Formicidae) in early Eocene amber of France. Zootaxa, 2870: 5362.Google Scholar
Barden, P. and Grimaldi, D.A. 2016. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Current Biology, 26: 515521.Google Scholar
Barreda, V.D., Cúneo, N.R., Wilf, P., Currano, E.D., Scasso, R.A., and Brinkhuis, H. 2012. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike. Public Library of Science One, 7: e52455.Google Scholar
Belokobylskij, S.A. 2012. Cretaceous braconid wasps from the Magadan Province of Russia. Acta Palaeontologica Polonica, 57: 351361.Google Scholar
Belokobylskij, S.A. 2014. Family Braconidae Nees, 1812. In The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the Insect Limestone (late Eocene) of the Isle of Wight, UK. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104: 360–392.Google Scholar
Benson, R.B. 1946. Classification of the Cephidae (Hymenoptera Symphyta). Transactions of the Royal Entomological Society of London, 96: 89108.CrossRefGoogle Scholar
Berry, E. W. 1931. An insect-cut leaf from the Lower Eocene. American Journal of Science, 21: 301304.CrossRefGoogle Scholar
Blonder, B., Royer, D.L., Johnson, K.R., Miller, I., and Enquist, B.J. 2014. Plant ecological strategies shift across the Cretaceous–Paleogene boundary. Public Library of Science Biology, 12: e1001949.Google Scholar
Bolton, B. 2003. Synopsis and classification of Formicidae. American Entomological Institute, Gainesville, Florida, United States of America.Google Scholar
Bowen, G.J., Clyde, W.C., Koch, P.L., Faircloth, B.C., Ward, P.S., Buffington, M.L., et al. 2002. Mammal dispersal at the Paleocene/Eocene boundary. Science, 295: 20622065.Google Scholar
Branstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., et al. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27: 10191025.Google Scholar
Brooks, H. K. 1955. Healed wounds and galls on fossil leaves from the Wilcox deposits (Eocene) of western Tennessee. Psyche, 62: 19.Google Scholar
Brothers, D.J. 1992. The first Mesozoic Vespidae from the Southern Hemisphere, Botswana. Journal of Hymenoptera Research, 1: 119124.Google Scholar
Brothers, D.J. and Finnamore, A.T. 1993. Superfamily Vespoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 161278.Google Scholar
Brothers, D.J. and Rasnitsyn, A.P. 2003. Diversity of Hymenoptera and other insects in the late Cretaceous (Turonian) deposits at Orapa, Botswana: a preliminary review. African Entomology, 11: 221226.Google Scholar
Buffington, M.L., Brady, S.G., Morita, S.I., and Van Noort, I. 2012. Divergence estimates and early evolutionary history of Figitidae (Hymenoptera: Cynipoidea). Systematic Entomology, 37: 287304.CrossRefGoogle Scholar
Buhl, P.N. 2002. On the Baltic amber collection of Platygastridae and Diapriidae. Entomologiske Meddelelser, 70: 5761.Google Scholar
Burks, R.A., Heraty, J.M., Pinto, J.D., and Grimaldi, D. 2015. Small but not ephemeral: newly discovered species of Aphelinidae and Trichogrammatidae (Insecta: Hymenoptera: Chalcidoidea) from Eocene amber. Systematic Entomology, 40: 592605.Google Scholar
Burnham, L. 1978. A survey of social insects in the fossil record. Psyche, 85: 85133.Google Scholar
Cameron, A.E. 1917. Fossil insects, with special reference to those of Tertiary lake deposits of the Similkameen Valley, BC. Proceedings of the Entomological Society of British Columbia, 10: 2129.Google Scholar
Cardinal, S. and Danforth, B.N. 2013. Bees diversified in the age of eudicots. Proceedings of the Royal Society B, 280: 20122686.Google Scholar
Carmean, D. 1991. Biology of the Trigonalyidae (Hymenoptera), with notes on the vespine parasitoid Bareogonalos canadensis . New Zealand Journal of Zoology, 18: 209214.Google Scholar
Carmean, D. and Kimsey, L. 1998. Phylogenetic revision of the parasitoid wasp family Trigonalidae (Hymenoptera). Systematic Entomology, 23: 3576.Google Scholar
Carpenter, J.M. 2000. A vespid wasp from New Jersey amber. In Studies in fossil amber, with particular reference to the Cretaceous of New Jersey. Edited by D. Grimaldi. Backhuys Publishers, Leiden, The Netherlands. Pp. 333337.Google Scholar
Carpenter, J.M. and Rasnitsyn, A.P. 1990. Mesozoic Vespidae. Psyche, 97: 120.Google Scholar
Carroll, C.R. and Janzen, D.H. 1973. Ecology of foraging by ants. Annual Review of Ecology and Systematics, 4: 231257.Google Scholar
Cleal, C.J. and Cascales-Miñana, B. 2014. Composition and dynamics of the great Phanerozoic evolutionary floras. Lethaia, 47: 469484.Google Scholar
Cockerell, T.D.A. 1907. Some fossil arthropods from Florissant, Colorado. Bulletin of the American Museum of Natural History, 23: 605616.Google Scholar
Cockerell, T.D.A. 1910. A tertiary leaf-cutting bee. Nature, 82: 429.Google Scholar
Cockerell, T.D.A. 1925. Fossil insects in the United States National Museum. Proceedings of the United States National Museum, 64: 115.Google Scholar
Crepet, W.L. 2008. The fossil record of angiosperms: requiem or renaissance? Annals of the Missouri Botanical Garden, 95: 333.CrossRefGoogle Scholar
Crepet, W.L. and Nixon, K.C. 1998. Fossil Clusiaceae from the late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. American Journal of Botany, 85: 11221133.Google Scholar
Currano, E.D., Wilf, P., Wing, S.L., Labandeira, C.C., Lovelock, E.C., and Royer, D.L. 2008. Sharply increased insect herbivory during the Paleocene–Eocene thermal maximum. Proceedings of the National Academy of Sciences of the United States of America, 105: 19601964.Google Scholar
Danforth, B.N., Cardinal, S., Praz, C., Almeida, E.A.B., and Michez, D. 2013. The impact of molecular data on our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58: 5778.Google Scholar
Danforth, B.N. and Poinar, G.O. 2011. Morphology, classification, and antiquity of Melittosphex burmensis (Apoidea: Melittosphecidae) and implications for early bee evolution. Journal of Paleontology, 85: 882891.CrossRefGoogle Scholar
Davis, R.B., Baldauf, S.L., and Mayhew, P.J. 2010. The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC Evolutionary Biology, 10: 109.CrossRefGoogle ScholarPubMed
Dawson, G.M. 1879. Preliminary report on the physical and geological features of the southern portions of the interior of British Columbia, 1877. In Report of progress for 1877–1878. Geological Survey of Canada, Montréal, Québec, Canada. Pp. 1–187B.Google Scholar
Dehon, M., Michez, D., Nel, A., Engel, M.S., and De Meulemeester, T. 2014. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution. Public Library of Science One, 9: e108865.Google ScholarPubMed
Dehon, M., Perrard, A., Engel, M.S., Nel, A., and Michez, D. 2017. Antiquity of cleptoparasitism among bees revealed by morphometric and phylogenetic analysis of a Paleocene fossil nomadine (Hymenoptera: Apidae). Systematic Entomology, 42: 543554.Google Scholar
De Meulemeester, T., Michez, D., Aytekin, A.M., and Danforth, B.N. 2012. Taxonomic affinity of halictid bee fossils (Hymenoptera: Anthophila) based on geometric morphometrics analyses of wing shape. Journal of Systematic Palaeontology, 10: 755764.Google Scholar
DeVore, M.L. and Pigg, K.B. 2007. A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanagon Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Systematics and Evolution, 266: 4557.Google Scholar
DeVore, M.L. and Pigg, K.B. 2009. Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bulletin of Geosciences, 85: 111134.Google Scholar
Dilcher, D.L. 1973. Vegetation and vegetational history of northern Latin America. Edited by A. Graham. Elsevier, Amsterdam, The Netherlands. Pp. 3959.Google Scholar
Dlussky, G.M. 1983. A new family of upper Cretaceous Hymenoptera – an “intermediate link” between the ants and the scolioids. Paleontological Journal, 17: 6578.Google Scholar
Dlussky, G.M. 1987. New Formicoidea (Hymenoptera) of the upper Cretaceous. Paleontological Journal, 21: 146150.Google Scholar
Dlussky, G.M. 1996. Ants (Hymenoptera: Formicidae) from Burmese amber. Paleontological Journal, 30: 449454.Google Scholar
Dlussky, G.M. 1999. The first find of the Formicoidea (Hymenoptera) in the lower Cretaceous of the Northern Hemisphere. Paleontological Journal, 33: 274277.Google Scholar
Dlussky, G.M., Brothers, D.J., and Rasnitsyn, A.P. 2004. The first late Cretaceous ants (Hymenoptera: Formicidae) from southern Africa, with comments on the origin of the Myrmicinae. Insect Systematics & Evolution, 35: 113.Google Scholar
Dlussky, G.M. and Rasnitsyn, A.P. 1999. Two new species of aculeate hymenopterans (Vespida=Hymenoptera) from the middle Eocene of the United States. Paleontological Journal, 33: 546549.Google Scholar
Dlussky, G.M. and Rasnitsyn, A.P. 2003. Ants (Hymenoptera: Formicidae) of Formation Green River and some other middle Eocene deposits of North America. Russian Entomological. Journal, 11: 411436.Google Scholar
Dlussky, G.M., Rasnitsyn, A.P., and Perfilieva, K.S. 2015. The ants (Hymenoptera: Formicidae) of Bol’shaya Svetlovodnaya (late Eocene of Sikhote-Alin, Russian Far East). Caucasian Entomological Bulletin, 11: 131152.Google Scholar
Dlussky, G.M. and Wedmann, S. 2012. The poneromorph ants (Hymenoptera: Amblyoponinae, Ectatomminae, Ponerinae) of Grube Messel, Germany: high biodiversity in the Eocene. Journal of Systematic Palaeontology, 10: 725753.Google Scholar
Dockery, D.T. 1996. Toward a revision of the generalized stratigraphic column of Mississippi. Mississippi Geology, 17: 18.Google Scholar
Donovan, M.P., Iglesias, A., Wilf, P., Labandeira, C.C., and Cúneo, R.N. 2016. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nature Ecology & Evolution, 1: 0012.Google Scholar
Douglas, S.D. and Stockey, R.A. 1996. Insect fossils in middle Eocene deposits from British Columbia and Washington State: faunal diversity and geological range extensions. Canadian Journal of Zoology, 74: 11401157.Google Scholar
Doyle, J.A. 2015. Recognizing angiosperm clades in the early Cretaceous fossil record. Historical Biology, 27: 414429.Google Scholar
Dunn, R.R., Gove, A.D., Barraclough, T.G., Givnish, T.J., and Majer, J.D. 2007. Convergent evolution of an ant–plant mutualism across plant families, continents, and time. Evolutionary Ecology Research, 9: 13491362.Google Scholar
Elias, T.S. 1983. Extrafloral nectaries: their structure and distribution. In The biology of nectaries. Edited by B. Bentley and T. Elias. Columbia University Press, New York, United States of America. Pp. 174203.Google Scholar
Engel, M.S. 1999. Megachile glaesaria, the first megachilid bee fossil from amber (Hymenoptera: Megachilidae). American Museum Novitates, 3276: 113.Google Scholar
Engel, M.S. 2000. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296: 111.Google Scholar
Engel, M.S. 2006. A new cuckoo wasp of the genus Ceratochrysis in amber from the Dominican Republic (Hymenoptera: Chrysididae). Polskie Pismo Entomologiczne, 75: 499504.Google Scholar
Engel, M.S. and Archibald, S.B. 2003. An early Eocene bee (Hymenoptera: Halictidae) from Quilchena, British Columbia. The Canadian Entomologist, 135: 6369.CrossRefGoogle Scholar
Engel, M.S., Barden, P., Riccio, M.L., and Grimaldi, D.A. 2016. Morphologically specialized termite castes and advanced sociality in the early Cretaceous. Current Biology, 26: 522530.CrossRefGoogle ScholarPubMed
Engel, M.S. and Grimaldi, D.A. 2005. Primitive new ants in Cretaceous amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae). American Museum Novitates, 3485: 123.Google Scholar
Engel, M.S. and Grimaldi, D.A. 2006. The first Cretaceous spider wasp (Hymenoptera: Pompilidae). Journal of the Kansas Entomological Society, 79: 359368.Google Scholar
Engel, M.S. and Grimaldi, D.A. 2007. New false fairy wasps in Cretaceous amber from New Jersey and Myanmar (Hymenoptera: Mymarommatoidea). Transactions of the Kansas Academy of Science, 110: 159168.Google Scholar
Engel, M.S., Grimaldi, D.A., and Krishna, K. 2009. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 3650: 127.Google Scholar
Engel, M.S. and Michener, C.D. 2013. A minute stingless bee in Eocene Fushan amber from northeastern China (Hymenoptera: Apidae). Journal of Melittology, 14: 110.Google Scholar
Engel, M.S., Ortega-Blanco, J., Nascimbene, P.C., and Singh, H. 2013a. The bees of early Eocene Cambay amber (Hymenoptera: Apidae). Journal of Melittology, 25: 112.Google Scholar
Engel, M.S., Ortega-Blanco, J., Soriano, C., Grimaldi, D.A., and Delclòs, X. 2013b. A new lineage of enigmatic diaprioid wasps in Cretaceous amber (Hymenoptera: Diaprioidea). American Museum Novitates, 3771: 123.Google Scholar
Engel, M.S. and Perkovsky, E.E. 2006. An Eocene bee in Rovno amber, Ukraine (Hymenoptera: Megachilidae). American Museum Novitates, 3506: 111.Google Scholar
Ewing, T. 1980. Paleogene tectonic evolution of the Pacific Northwest. The Journal of Geology, 88: 619638.Google Scholar
Faegri, K. and van der Pijl, L. 1979. The principles of pollination ecology, 3rd edition, Pergamon Press, Oxford, New York, United States of America.Google Scholar
Fan, M., Constenius, K.N., and Dettman, D.L. 2017. Prolonged high relief in the northern Cordilleran orogenic front during middle and late Eocene extension based on stable isotope paleoaltimetry. Earth and Planetary Science Letters, 457: 376384.Google Scholar
Finnamore, A.T. and Brothers, D.J. 1993. Superfamily Chrysidoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 130160.Google Scholar
Finnamore, A.T. and Michener, C.D. 1993. Superfamily Apoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 279357.Google Scholar
Fittkau, E.J. and Klinge, H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica, 5: 214.Google Scholar
Gao, T., Ren, D., and Shih, C. 2009. The first Xyelotomidae (Hymenoptera) from the middle Jurassic in China. Annals of the Entomological Society of America, 102: 588596.Google Scholar
Gaston, K.J. 1991. The magnitude of global insect species richness. Conservation Biology, 5: 283296.CrossRefGoogle Scholar
Gauld, I.D. 1988. Evolutionary patterns of host utilization by ichneurnonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biological Journal of the Linnean Society, 35: 351377.Google Scholar
Gibson, G.A.P. 1993. Superfamilies Mymarommatoidea, and Chalcidoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 570655.Google Scholar
Gibson, G.A.P., Read, J., and Huber, J.T. 2007. Diversity, classification and higher relationships of Mymarommatoidea (Hymenoptera). Journal of Hymenoptera Research, 16: 51146.Google Scholar
Gilbert, L.E. 1980. Food web organization and the conservation of Neotropical diversity. In Conservation biology: an evolutionary–ecological perspective. Edited by M.E. Soulé and B.A. Wilcox. Sinauer Associates, Sunderland, Massachusetts, United States of America. Pp. 1133.Google Scholar
Gingerich, P.D. 1987. Evolution and the fossil record: patterns, rates, and processes. Canadian Journal of Zoology, 65: 10531060.Google Scholar
Gonzalez, V.H., Griswold, T., Praz, C.J., and Danforth, B.N. 2012. Phylogeny of the bee family Megachilidae (Hymenoptera: Apoidea) based on adult morphology. Systematic Entomology, 37: 261286.Google Scholar
Goulet, H. 1993. Superfamilies Cephoidea, Megalodontoidea, Orussoidea, Siricoidea, Tenthredinoidea, and Xyeloidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 101129.Google Scholar
Graham, A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98: 336351.Google Scholar
Grande, L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna, 2nd edition. Bulletin of the Geological Survey of Wyoming 63. Geological Survey of Wyoming, Laramie, Wyoming, United States of America.Google Scholar
Greenwalt, D. and Engel, M.S. 2014. A diminutive pelecinid wasp from the Eocene Kishenehn Formation of northwestern Montana (Hymenoptera: Pelecinidae). Novitates Paleoentomologicae, 8: 19.Google Scholar
Greenwalt, D. and Labandeira, C. 2013. The amazing fossil insects of the Eocene Kishenehn Formation in northwestern Montana. Rocks and Minerals, 88: 434441.Google Scholar
Greenwalt, D.E., Rose, T.R., Siljestrom, S.M., Goreva, Y.S., Constenius, K.N., and Wingerath, J.G. 2015. Taphonomic studies of the fossil insects of the middle Eocene Kishenehn Formation. Acta Palaeontologica Polonica, 60: 931947.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W., and Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42: 167185.Google Scholar
Grimaldi, D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Gardens, 86: 373406.Google Scholar
Grimaldi, D.A., Agosti, D., and Carpenter, J.M. 1997. New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates, 3208: 143.Google Scholar
Grimaldi, D.A. and Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Grimaldi, D., Shedrinsky, A., and Wampler, T. 2000. A remarkable deposit of fossiliferous amber from the upper Cretaceous (Turonian) of New Jersey. In Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. Edited by D. Grimaldi. Backhuys Publishers, Leiden, The Netherlands. Pp. 176.Google Scholar
Gromov, V.V., Dmitriev, V.Y., Zherikhin, V.V., Lebedev, E.L., Ponomarenko, A.G., Rasnitsyn, A.P., and Sukaczewa, I.D. 1993. Melovye entomofauny basseina r. Ul’ia (Zapadtoe Priokhot’ie) [Cretaceous insects from Uljya-river Basin (West Okhot Region)]. In Mezozoiskie nasekomye I ostrakody Azii [Mesozoic insects and ostracods from Asia]. Edited by A.G. Ponomarenko. Trudy Paleontologicheskogo instituta Rossiiskoi Akademii Nauk SSSR [Transactions of the Paleontological Institute, Russian Academy of Sciences of the Union of Soviet Socialist Republics], 252: 5–60. [In Russian].Google Scholar
Handel, S.N., Fisch, S.B., and Schatz, G.E. 1981. Ants disperse a majority of herbs in a mesic forest community in New York State. Bulletin of the Torrey Botanical Club, 430437.Google Scholar
Handlirsch, A. 1910. Canadian fossil insects. Contributions to Canadian Paleontology, 2: 5, Insects from the Tertiary lake deposits of the southern interior of British Columbia, collected by Mr. Lawrence M. Lambe in 1906. Geological Survey of Canada Memoir, 12: 93–129.Google Scholar
Harding, I.C. and Chant, L.S. 2000. Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant Lake Beds, Colorado, United States. Geology (Boulder), 28: 195198.Google Scholar
Hawkins, B.A. 1993. Refuges, host population dynamics and the genesis of parasitoid diversity. In Hymenoptera and biodiversity. Edited by J. LaSalle and I.D. Gauld. CAB International, Wallingford, United Kingdom. Pp. 235256.Google Scholar
Hawkins, B.A. and Lawton, J.H. 1987. Species richness for parasitoids of British phytophagous insects. Nature, 326: 788790.Google Scholar
Heer, O. 1847. Die Insektenfauna der Tertiärgebilde von Oeningen und Rodoboj in Croatien. W. Engelmann, Leipzig, Germany.Google Scholar
Heikkilä, M., Kaila, L., Mutanen, M., Peña, C., and Wahlberg, N. 2012. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proceedings of the Royal Society of London B Biological Sciences, 279: 10931099.CrossRefGoogle ScholarPubMed
Heimhofer, U., Hochuli, P.A., Burla, S., Dinis, J.M.L., and Weissert, H. 2005. Timing of early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. Geology, 33: 141144.Google Scholar
Heraty, J.M. and Darling, D.C. 2009. Fossil Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea) from Baltic amber. Zootaxa, 2306: 116.Google Scholar
Herz, H., Beyschlag, W., and Hölldobler, B. 2007. Herbivory rate of leaf-cutting ants in a tropical moist forest in Panama at the population and ecosystem scales. Biotropica, 39: 482488.Google Scholar
Hölldobler, B. and Wilson, E.O. 1990. The ants. Harvard University Press, Cambridge, Massachusetts, United States of America.Google Scholar
Hong, Y.C. 2002. Amber insect of China. Beijing Science and Technology Press, Beijing, China.Google Scholar
Huber, J.T. and Greenwalt, D. 2011. Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera. In Advances in the systematics of fossil and modern insects: honouring Alexandr Rasnitsyn. Edited by D.E. Shcherbakov, M.S. Engel, and M.J. Sharkey. ZooKeys, 130 : 473494.Google Scholar
Iglesias, A., Wilf, P., Johnson, K.R., Zamuner, A.B., Cúneo, N.R., Matheos, S.D., and Singer, B.S. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology, 35: 947950.Google Scholar
Isaka, Y. and Sato, T. 2015. Was species diversification in Tenthredinoidea (Hymenoptera: Symphyta) related to the origin and diversification of angiosperms? The Canadian Entomologist, 147: 443458.Google Scholar
Janzen, D.H. 1981. The peak in North American ichneumonid species richness lies between 38° and 48°N. Ecology, 62: 532537.Google Scholar
Jell, P.A. and Duncan, P.A. 1986. Invertebrates, mainly insects, from the freshwater, lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. In Plants and invertebrates from the lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Edited by P.A. Jell and J. Roberts. Association of Australian Palaeontologists, Sydney, Australia. Pp. 111205.Google Scholar
Johnson, N.F. and Musetti, L. 2012. Genera of the parasitoid wasp family Monomachidae (Hymenoptera: Diaprioidea). Zootaxa, 3188: 3141.Google Scholar
Johnson, N.F., Musetti, L., and Janzen, J.-W. 2001. A new fossil species of the Australian endemic genus Peradenia Naumann & Masner (Hymenoptera: Proctotrupoidea, Peradeniidae) from Baltic amber. Insect Systematics and Evolution, 32: 191194.Google Scholar
Kim, C.-J., Lelej, A.S., Park, B., and Lee, J.-W. 2016. Review of the family Proctorenyxidae (Hymenoptera: Proctotrupoidea), with description of new species from South Korea. Zootaxa, 4103: 94100.Google Scholar
Klopfstein, S., Vilhelmsen, L., Heraty, J.M., Sharkey, M., and Ronquist, F. 2013. The Hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. Public Library of Science One, 8: e69344.Google Scholar
Kodrul, T.M. 1999. Fitostratigrafiia paleogena yuzhnogo Sakhalina [Phytostratigraphy of the Paleogene of southern Sakhalin]. Trudy Geologicheskogo Instituta Rossiyskoy Akademii Nauk [Proceedings of the Geological Institute of the Russian Academy of Sciences], 519: 1150. [In Russian].Google Scholar
Kolyada, V.A. 2009. Revision of some parasitic wasps (Hymenoptera: Proctotrupoidea sensu lato) from the Florissant locality, United States. Paleontological Journal, 43: 191196.CrossRefGoogle Scholar
Kolyada, V.A. and Mostovski, M.B. 2007. Revision of Proctotrupidae (Insecta: Hymenoptera) described by Ch. T. Brues from Baltic amber. Zootaxa, 1661: 2938.Google Scholar
Kolyada, V. and Perkovsky, E.A. 2011. New species of the genus Disogmus Förster (Hymenoptera, Proctotrupoidea, Proctotrupidae) from the Eocene Rovno amber. Zookeys, 130: 455459.Google Scholar
Kopylov, D.S. 2010. Ichneumonids of the subfamily Tanychorinae (Insecta: Hymenoptera: Ichneumonidae) from the lower Cretaceous of Transbaikalia and Mongolia. Paleontological Journal, 44: 179186.Google Scholar
Kopylov, D.S. 2012. New species of Praeichneumonidae (Hymenoptera, Ichneumonoidea) from the lower Cretaceous of Transbaikalia. Paleontological Journal, 46: 6672.Google Scholar
Kopylov, D.S., Brothers, D.J., and Rasnitsyn, A.P. 2010. Two new labenopimpline ichneumonids (Hymenoptera: Ichneumonidae) from the upper Cretaceous of southern Africa. African Invertebrates, 51: 423430.Google Scholar
Kopylov, D.S. and Rasnitsyn, A.P. 2016. Cephidae (Hymenoptera) of the Mesozoic. Euroasian Entomological Journal, 15(supplement 1): 7883.Google Scholar
Krassilov, V.A. and Rasnitsyn, A.P. 1999. Plant remains from the guts of fossil insects: evolutionary and paleoecological inferences. Proceedings of the First Palaeoentomological Conference Moscow 1998. Bratislava. AMBA/AM/PFICM98/1.99. AMBA Projects Publication, Bratislava, Slovakia. Pp. 65–72.Google Scholar
Krassilov, V.A. and Rasnitsyn, A.P. (editors). 2008. Plant-arthropod interactions in the early angiosperm history: evidence from the Cretaceous of Israel. Pensoft and Brill, Sofia, Bulgaria.Google Scholar
Krassilov, V., Tekleva, M., Meyer-Melikyan, N., and Rasnitsyn, A. 2003. New pollen morphotype from gut compression of a Cretaceous insect, and its bearing on palynomorphological evolution and palaeoecology. Cretaceous Research, 24: 149156.Google Scholar
Krogmann, L., Engel, M.S., Bechly, G., and Nel, A. 2013. Lower Cretaceous origin of long-distance mate finding behaviour in Hymenoptera (Insecta). Journal of Systematic Palaeontology, 11: 8389.Google Scholar
Kupryjanowicz, J. 2001. Arthropods in Baltic amber and their photographic record. In The amber treasure trove: part I, the Tadeusz Giecewicz’s collection at the Museum of the Earth, Polish Academy of Sciences, Warsaw. Edited by B. Kosmowska-Ceranowicz. Museum of the Earth Documentary Studies 18. Museum of the Earth, Warsaw, Poland. Pp. 1972, 36 plates.Google Scholar
Labandeira, C.C. 2002. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37: 3159.Google Scholar
Labandeira, C.C. 2010. The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Annals of the Missouri Botanical Garden, 97: 469513.Google Scholar
Labandeira, C.C., Johnson, K.R., and Wilf, P. 2002. Impact of the terminal Cretaceous event on plant–insect associations. Proceedings of the National Academy of Sciences of the United States of America, 99: 20612066.Google Scholar
Labandeira, C.C., Yang, Q., Santiago-Blay, J.A., Hotton, C.L., Monteiro, A., Wang, Y.J., et al. 2016. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B, 283: 20152893.Google Scholar
LaPolla, J.S., Dlussky, G.M., and Perrichot, V. 2013. Ants and the fossil record. The Annual Review of Entomology, 58: 609630.Google Scholar
LaPolla, J.S. and Greenwalt, D.E. 2015. Fossil ants (Hymenoptera: Formicidae) of the middle Eocene Kishenehn Formation. Sociobiology, 62: 163174.Google Scholar
LaSalle, J. 1993. Parasitic Hymenoptera, biological control and biodiversity. In Hymenoptera and biodiversity. Edited by J. LaSalle and I.D. Gauld. CAB International, Wallingford, United Kingdom. Pp. 197215.Google Scholar
LaSalle, J. and Gauld, I.D. 1992. Parasitic Hymenoptera and the biodiversity crisis. Redia, 74: 315334.Google Scholar
LaSalle, J. and Gauld, I.D. 1993. Hymenoptera: their diversity, and impact on the diversity of other organisms. In Hymenoptera and biodiversity. Edited by J. LaSalle and I.D. Gauld. CAB International, Wallingford, United Kingdom. Pp. 126.Google Scholar
Lenz, O. K., Wilde, V., Mertz, D. F., and Riegel, W. 2015. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). International Journal of Earth Sciences, 104: 873889.Google Scholar
Leston, D. 1973. The ant mosaic – tropical tree crops and the limiting of pests and diseases. Pest Articles & News Summaries, 19: 311341.Google Scholar
Leston, D. 1978. A Neotropical ant mosaic. Annals of the Entomological Society of America, 71: 649653.Google Scholar
Lewis, S.E. 1992. Insects of the Klondike Mountain Formation, Republic, Washington. Washington Geology, 20: 1519.Google Scholar
Lewis, S.E. 1994. Evidence of leaf-cutting bee damage from the Republic sites (middle Eocene) of Washington. Journal of Paleontology, 68: 172173.Google Scholar
Li, L., Kopylov, D.S., Shih, C., and Ren, D. 2017. The first record of Ichneumonidae (Insecta: Hymenoptera) from the upper Cretaceous of Myanmar. Cretaceous Research, 70: 152162.Google Scholar
Liu, Z., Engel, M., and Grimaldi, D.A. 2007. Phylogeny and geological history of the cynipoid wasps (Hymenoptera: Cynipoidea). American Museum Novitates, 3583: 148.Google Scholar
Lu, X.M., Zhang, W.W., and Liu, X.Y. 2016. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions. Scientific Reports, 6: 25382.Google Scholar
Lucky, A., Trautwein, M.D., Guenard, B.S., Weiser, M.D., and Dunn, R.R. 2013. Tracing the rise of ants – out of the ground. Public Library of Science One, 8: e84012.Google Scholar
Lutz, H. 1990. Systematische und palökologische Untersuchungen an Insekten aus dem Mittel-Eozän der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg, 124: 1165.Google Scholar
Majer, J.D. 1983. Ants: bioindicators of minesite rehabilitation, land use and land conservation. Environmental Management, 7: 375383.Google Scholar
Makarkin, V.N. 2016. Enormously long, siphonate mouthparts of a new, oldest known spongillafly (Neuroptera, Sisyridae) from Burmese amber imply nectarivory or hematophagy. Cretaceous Research, 65: 126137.Google Scholar
Makarkin, V.N. and Archibald, S.B. 2013. A diverse new assemblage of green lacewings (Insecta, Neuroptera, Chrysopidae) from the early Eocene Okanagan Highlands, western North America. Journal of Paleontology, 87: 123146.Google Scholar
Manchester, S.R. 1999. Biogeographical relationships of North American tertiary floras. Annals of the Missouri Botanical Garden, 86: 472522.Google Scholar
Martins, A.C., Melo, G.A., and Renner, S.S. 2014. The corbiculate bees arose from New World oil-collecting bees: implications for the origin of pollen baskets. Molecular Phylogenetics and Evolution, 80: 8894.Google Scholar
Masner, L. 1993a. Superfamily Ceraphronoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 566569.Google Scholar
Masner, L. 1993b. Superfamily Proctotrupoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 537557.Google Scholar
Masner, L. 1993c. Superfamily Platygasteroidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 558565.Google Scholar
Mason, W.R.M. 1993. Superfamilies Evanioidea, Stephanoidea, Megalyroidea, and Trigonalyoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 510520.Google Scholar
Mathewes, R.W., Greenwood, D.R., and Archibald, S.B. 2016. Paleoenvironment of the Quilchena flora, British Columbia, during the early Eocene Climatic Optimum. Canadian Journal of Earth Sciences, 53: 574590.Google Scholar
May, R.M. 1988. How many species are there on Earth? Science, 241: 14411449.Google Scholar
McKellar, R.C. and Engel, M.S. 2011. New Stigmaphronidae and Megaspilidae (Hymenoptera: Ceraphronoidea) from Canadian Cretaceous amber. Cretaceous Research, 32: 794805.Google Scholar
McKellar, R.C. and Engel, M.S. 2012. Hymenoptera in Canadian Cretaceous amber (Insecta). Cretaceous Research, 35: 258279.Google Scholar
McKellar, R.C., Kopylov, D.S., and Engel, M.S. 2013. Ichneumonidae (Insecta: Hymenoptera) in Canadian late Cretaceous amber. Fossil Record, 16: 217227.Google Scholar
McLeroy, C.A. and Anderson, R.Y. 1996. Laminations of the Oligocene Florissant Lake deposits, Colorado. Geological Society of America Bulletin, 77: 605618.Google Scholar
Menier, J.-J., Nel, A., Waller, A., and De Ploëg, G. 2004. A new fossil ichneumon wasp from the lowermost Eocene amber of Paris Basin (France), with a checklist of fossil Ichneumonoidea sl (Insecta: Hymenoptera: Ichneumonidae: Metopiinae). Geologica Acta, 2: 8394.Google Scholar
Menke, A.S. and Rasnitsyn, A.P. 1987. Affinities of the fossil wasp Hoplisidea kohliana Cockerell (Hymenoptera: Sphecidae: Sphecinae). Psyche, 94: 3538.Google Scholar
Meyer, H.W. 2003. The fossils of Florissant. Smithsonian Books, Washington, District of Columbia, United States of America.Google Scholar
Michener, C.D. 1993. Series Apiformes. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 307321.Google Scholar
Michener, C.D. 2007. The bees of the world, 2nd edition, Johns Hopkins University Press, Baltimore, Maryland, United States of America.Google Scholar
Michener, C.D. and Grimaldi, D.A. 1988. A Trigona from late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates, 2917: 110.Google Scholar
Michez, D., De Meulemeester, T., Rasmont, P., Nel, A., and Patiny, S. 2009. New fossil evidence of the early diversification of bees: Paleohabropoda oudardi from the French Paleocene (Hymenoptera, Apidae, Anthophorini). Zoologica Scripta, 38: 171181.Google Scholar
Michez, D., Nel, A., Menier, J.-J., and Rasmont, P. 2007. The oldest fossil of a melittid bee (Hymenoptera: Apiformes) from the early Eocene of Oise (France). Zoological Journal of the Linnean Society, 150: 701709.Google Scholar
Mitchell, P. and Wighton, D. 1979. Larval and adult insects from the Paleocene of Alberta, Canada. The Canadian Entomologist, 111: 777782.Google Scholar
Moreau, C.S., Bell, C.D., Vila, R., Archibald, S.B., and Pierce, N.E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science, 312: 101104.Google Scholar
Moss, P.T., Greenwood, D.R., and Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia/Washington State) from palynology. Canadian Journal of Earth Sciences, 42: 187204.Google Scholar
Mustoe, G.E. 2005. Diatomaceous origin of siliceous shale in Eocene lake beds of central British Columbia. Canadian Journal of Earth Sciences, 42: 231241.Google Scholar
Mustoe, G.E. 2015. Geologic history of Eocene Stonerose Fossil Beds, Republic, Washington, USA. Geosciences, 5: 243263.Google Scholar
Naumann, I.D. and Masner, L. 1985. Parasitic wasps of the proctotrupoid complex: a new family from Australia and a key to world families (Hymenoptera: Proctotrupoidea sensu lato). Australian Journal of Zoology, 33: 761783.Google Scholar
Nel, A. 1992. Révision du statut de Manevalia pachyliformis Piton, 1940 (Insecta, Heteroptera, Hymenoptera). Entomologica Gallica, 3: 7677.Google Scholar
Nel, A. 2004. New and poorly known Cenozoic sawflies of France (Hymenoptera, Tenthredinoidea, Pamphilioidea). Deutsche Entomologische Zeitschrift, 51: 253269.Google Scholar
Nel, A. and Auvray, F. 2006. The oldest Vespinae from the Paleocene of Menat (France) (Hymenoptera: Vespidae). Zootaxa, 1344: 5962.Google Scholar
Nel, A., Azar, D., and Hevret, S. 2010. A new rhopalosomatid wasp in the Paleocene of France (Hymenoptera). Annales de la Société Entomologique de France, 46: 211215.Google Scholar
Nel, A. and Brasero, N. 2010. Oise amber. In Biodiversity of fossils in amber from the major world deposits. Edited by D. Penney. Siri Scientific Press, Manchester, United Kingdom. Pp. 137148.Google Scholar
Nel, A., de Ploëg, G, Millet, J., Menier, J.-J., and Waller, A. 2004. The French ambers: a general conspectus and the lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin. Geologica Acta, 2: 38.Google Scholar
Nel, A., Perrault, G., Perrichot, V., and Néraudeau, D. 2004. The oldest ant in the lower Cretaceous amber of Charente-Maritime (SW France) (Insecta: Hymenoptera: Formicidae). Geologica Acta, 2: 2329.Google Scholar
Nel, A., Perrichot, V., and Néraudeau, D. 2003. The oldest trigonalid wasp in the late Albian amber of Charente-Maritime (SW France) (Hymenoptera: Trigonalidae). Eclogae Geologicae Helvetiae, 96: 503508.Google Scholar
Nel, A. and Petrulevičius, J.F. 2003. New Palaeogene bees from Europe and Asia. Alcheringa, 27: 277293.Google Scholar
Neraudeau, D., Perrichot, V., Colin, J.-P., Girard, V., Gomez, B., Guillocheau, F. 2008. A new amber deposit from the Cretaceous (uppermost Albian-lowermost Cenomanian) of southwestern France. Cretaceous Research, 29: 925929.Google Scholar
Nesov, L.A. 1985. NBovye mlekopitayushchie mela Kyzulkumov [New mammals in the Cretaceous of Kyzylkum]. Vestnik of St. Petersburg State University, Biology Series, 17: 818. [In Russian].Google Scholar
Nesov, L.A. 1995. Dinozavry Severnoi Evrazii: Novye dannye o sostave kompleksov, ekologii I paleogeografii [Dinosaurs of the northern Eurasia: new data on the composition of assemblages, ecology and paleobiogeography]. Institut zemnoi kory St. Peterburgskogo Gosudarstvennogo Universiteta [Earth Crust Institute of St. Petersburg State University], St. Petersburg, Russia. [In Russian].Google Scholar
Niklas, K.J., Tiffney, B.H., and Knoll, A.H. 1983. Patterns in vascular land plant diversification. Nature, 303: 614616.Google Scholar
O’Brien, N.R., Meyer, H.W., and Harding, I.C. 2008. The role of biofilms in fossil preservation, Florissant Formation, Colorado. In Paleontology of the upper Eocene Florissant Formation, Colorado. Edited by H.W. Meyer and D.M. Smith. Boulder, Colorado, United States of America. Geological Society of America Special Papers, 435: 1931.Google Scholar
O’Brien, N.R., Meyer, H.W., Reilly, K., Ross, A.M., and Maguire, S. 2002. Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mountain Geology, 37: 111.Google Scholar
Ohl, M and Engel, M.S. 2007. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia, 20: 687700.Google Scholar
Ortega-Blanco, J., Delclòs, X., and Engel, M. 2011a. A Protorhyssaline wasp in early Cretaceous amber from Spain (Hymenoptera: Braconidae). Journal of the Kansas Entomological Society, 84: 5157.Google Scholar
Ortega-Blanco, J., McKellar, R.C., and Engel, M.S. 2014. Diverse scelionid wasps from early Cretaceous Álava amber, Spain (Hymenoptera: Platygastroidea). Bulletin of Geosciences, 89: 553571.Google Scholar
Ortega-Blanco, J., Peñalver, E., Delclòs, X., and Engel, M. 2011b. False fairy wasps in early Cretaceous amber from Spain (Hymenoptera: Mymarommatoidea). Palaeontology, 54: 511523.Google Scholar
Owen, J., Townes, H., and Townes, M. 1981. Species diversity of Ichneumonidae and Serphidae (Hymenoptera) in an English suburban garden. Biological Journal of the Linnean Society, 16: 315336.Google Scholar
Peñalver, E., Arillo, A., Pérez-de la Fuente, R., Riccio, M.L., Delclòs, X., Barrón, E., and Grimaldi, D.A. 2015. Long-proboscid flies as pollinators of Cretaceous gymnosperms. Current Biology, 25: 19171923.Google Scholar
Pennisi, E. 2009. On the origin of flowering plants. Science, 324: 2831.Google Scholar
Perkovsky, E.E., Rasnitsyn, A.P., Vlaskin, A.P., and Taraschuk, M.V. 2007. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates, 48: 229245.Google Scholar
Perkovsky, E.E. and Węgierek, P. 2017. Aphid-Buchnera-ant symbiosis, or why are aphids rare in the tropics and very rare further south? Earth and Environmental Science Transactions of the Royal Society of Edinburgh, in press.Google Scholar
Perkovsky, E.E., Zosimovich, V.Y., and Vlaskin, A.P. 2010. Rovno amber. In Biodiversity of fossils in amber from the major world deposits. Edited by D. Penney. Siri Scientific Press, Manchester, United Kingdom. Pp. 116136.Google Scholar
Perrard, A., Grimaldi, D., and Carpenter, J.M. 2017. Early lineages of Vespidae (Hymenoptera) in Cretaceous amber. Systematic Entomology, 42: 379–368.Google Scholar
Perrichot, V. 2015. A new species of Baikuris (Hymenoptera: Formicidae: Sphecomyrminae) in mid-Cretaceous amber from France. Cretaceous Research, 52: 585590.Google Scholar
Perrichot, V., Lacau, S., Néraudeau, D., and Nel, A. 2008a. Fossil evidence for the early ant evolution. Naturwissenschaften, 95: 8590.Google Scholar
Perrichot, V. and Nel, A. 2008. A new belytine wasp in Cretaceous amber from France (Hymenoptera: Diapriidae). Alavesia, 2: 203209.Google Scholar
Perrichot, V., Nel, A., Néraudeau, D., Lacau, S., and Guyot, T. 2008b. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae). Naturwissenschaften, 95: 9197.Google Scholar
Perrichot, V., Nel, A., and Quicke, D.L.J. 2009. New braconid wasps from French Cretaceous amber (Hymenoptera, Braconidae): synonymization with Eoichneumonidae and implications for the phylogeny of Ichneumonoidea. Zoologica Scripta, 38: 7988.Google Scholar
Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., et al. 2017. Evolutionary history of the Hymenoptera. Current Biology, 27: 10131018.Google Scholar
Petrulevičius, J.F., Nel, A., Rust, J., Bechly, G., and Kohls, D. 2007. New Paleogene Epallagidae (Insecta: Odonata) recorded in North America and Europe. Biogeographic implications. Alavesia, 1: 1525.Google Scholar
Pierce, N.E. 1985. Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein-rich food plants. The American Naturalist, 125: 888895.Google Scholar
Pierce, N.E., Braby, M.F., Heath, A., Lohman, D.J., Mathew, J., Rand, D.B., and Travassos, M.A. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology, 47: 733771.Google Scholar
Pigg, K.B., Manchester, S.R., and Wehr, W.C. 2003. Corylus, Carpinus, and Paleocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. International Journal of Plant Sciences, 164: 807822.Google Scholar
Pilgrim, E.F., Von Dohlen, C.D., and Pitts, J.P. 2008. Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta, 37: 539560.Google Scholar
Pimm, S.L. and Lawton, J.H. 1978. On feeding on more than one trophic level. Nature, 275: 542544.Google Scholar
Piton, L.-E. 1940. Paléontologie du Gisement Éocène de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société dʹHistoire Naturelle dʹAuvergne, 1: 1303 + 2 unnumbered.Google Scholar
Poinar, G. 2005. Fossil Trigonalidae and Vespidae (Hymenoptera) in Baltic amber. Proceedings of the Entomological Society of Washington, 107: 5563.Google Scholar
Poinar, G., Archibald, B., and Brown, A. 1999. New amber deposit provides evidence of early Paleogene extinctions, paleoclimates, and past distributions. The Canadian Entomologist, 131: 171177.Google Scholar
Poinar, G.O. and Danforth, B.N. 2006. A fossil bee from early Cretaceous Burmese amber. Science, 314: 614.Google Scholar
Popov, V.K. and Grebennikov, A.V. 2001. Novye dannye o vozraste effuzivov bogopol’skoi svity v Primorye [New data on the age of effusives from the Bogopol Formation in Primorye]. Tikhookeanskaya Geologiya [Pacific Geology], 3: 4754. [In Russian].Google Scholar
Pulawski, W.J., Rasnitsyn, A.P., Brothers, D.J., and Archibald, S.B. 2000. New genera of Angarosphecinae: Cretosphecium from early Cretaceous of Mongolia and Eosphecium from early Eocene of Canada (Hymenoptera: Sphecidae). Journal of Hymenoptera Research, 9: 3440.Google Scholar
Quicke, D.L.J. 2012. We know too little about parasitoid wasp distributions to draw any conclusions about latitudinal trends in species richness, body size and biology. Public Library of Science One, 7: e32101.Google Scholar
Radchenko, A.G. and Dlussky, G.M. 2015. First record of fossil species of the genus Tetramorium (Hymenoptera, Formicidae). Vestnik zoologii, 49: 311316.Google Scholar
Rasnitsyn, A.P. 1968. Novye Mezozojskie Pilil’shhiki (Hymenoptera, Symphyta). [New Mesozoic sawflies (Hymenoptera, Symphyta)]. In Jurskie Nasekomye Karatau [Jurassic insects of Karatau]. Edited by B.B. Rodendorf. Nauka, Moskow, Russia. Pp. 190236. [In Russian].Google Scholar
Rasnitsyn, A.P. 1975. Vysshie pereponchatokrylye mezozoya [Hymenoptera Apocrita of Mesozoic]. Trudy Paleontologicheskogo instituta Akademii Nauk SSSR [Transactions of the Palaeontological Institute of the Academy of Sciences of the Union of Soviet Socialist Republics], 147: 1134, 8 plates. [In Russian].Google Scholar
Rasnitsyn, A.P. 1978. Predislovie [Introduction]. In Vostochnopalearkticheskie pereponchatokrylye nasekomye podsemeistva Ichneumoninae [Eastern Palearctic Ichneumoninae]. Edited by G.H. Heinrich. Nauka Press Leningradskoe otdelenie [Leningrad Branch], Leningrad, Union of Soviet Socialist Republics. Pp. 35. [In Russian].Google Scholar
Rasnitsyn, A.P. 1980. Proiskhozhdenie I evolutsiia pereponchatokrylykh nasekomykh [The origin and evolution of Hymenoptera]. Trudy Paleontologicheskogo instituta Akademii Nauk SSSR [Transactions of the Paleontological Institute of the Academy of Sciences of the Union of Soviet Socialist Republics], 174: 1192. [In Russian].Google Scholar
Rasnitsyn, A.P. 1990a. Novye pereponchatokrylye semeistva Praeaulacidae iz rannego mela Buriatii I Mongolii [New Hymenoptera of the family Praeaulacidae from the early Cretaceous in Buriatia and Mongolia]. Vestnik Zoologii, 1990: 2731. [In Russian].Google Scholar
Rasnitsyn, A.P. 1990b. Otryad Vespida. Pereponchatokrylye [Order Vespida. Hymenopterans]. In Pozdnemezozoiskie nasekomye Vostochnogo Zabaikalya [Late Mesozoic insects of eastern Transbaikalia]. Edited by A.P. Rasnitsyn. Nauka, Moscow, Russia. Trudy Paleontologicheskogo instituta Akademii Nauk SSSR [Transactions of the Paleontological Institute of the Academy of Sciences of the Union of Soviet Socialist Republics], 239: 177205. [In Russian].Google Scholar
Rasnitsyn, A.P. 1993. Archaeoscoliinae, an extinct subfamily of scoliid wasps (Insecta: Vespida=Hymenoptera: Scoliidae). Journal of Hymenoptera Research, 2: 8595.Google Scholar
Rasnitsyn, A.P. 2002. Superorder Vespidea, Laicharting, 1781. Order Hymenoptera Linne, 1758 (=Vespida, Laicharting, 1781). In History of insects. Edited by A.P. Rasnitsyn and D.L.J. Quicke. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 242254.Google Scholar
Rasnitsyn, A.P. and Ansorge, J. 2000. New early Cretaceous hymenopterous insects (Insecta: Hymenoptera) from Sierra del Montsec (Spain). Paläontologische Zeitschrift, 74: 335341.Google Scholar
Rasnitsyn, A.P., Bashkuev, A.S., Kopylov, D.S., Lukashevich, E.D., Ponomarenko, A.G., Popov, Y.A., et al. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Research, 61: 234255.Google Scholar
Rasnitsyn, A.P., Basibuyuk, H.H., and Quicke, D.L.J. 2004. A basal chalcidoid (Insecta: Hymenoptera) from the earliest Cretaceous or latest Jurassic of Mongolia. Insect Systematics and Evolution, 35: 123135.Google Scholar
Rasnitsyn, A.P., Jarzembowski, E.A., and Ross, A.J. 1998. Wasps (Insecta: Vespida=Hymenoptera) from the Purbeck and Wealden (Lower Cretaceous) of southern England and their biostratigraphical and palaeoenvironmental significance. Cretaceous Research, 19: 329391.Google Scholar
Rasnitsyn, A.P. and Martínez-Delclòs, X. 1999. New Cretaceous Scoliidae (Vespida=Hymenoptera) from the lower Cretaceous of Spain and Brazil. Cretaceous Research, 20: 767772.Google Scholar
Rasnitsyn, A.P. and Michener, C.D. 1991. Miocene fossil bumble bee from the Soviet Far East with comments on the chronology and distribution of fossil bees (Hymenoptera: Apidae). Annals of the Entomological Society of America, 84: 583589.Google Scholar
Rasnitsyn, A.P., Pulawski, W.J., and Martínez-Delclòs, X. 1999. Cretaceous digger wasps of the new genus Bestiola Pulawski and Rasnitsyn (Hymenoptera: Sphecidae: Angarosphecinae). Journal of Hymenoptera Research, 8: 2334.Google Scholar
Rasnitsyn, A.P. and Ross, A.J. 2000. A preliminary list of arthropod families present in the Burmese amber collection at The Natural History Museum, London. Bulletin of the Natural History Museum, Geological Series, 56: 2124.Google Scholar
Rea, D.K., Zachos, J.C., Owen, R.M., and Gingerich, P.D. 1990. Global change at the Paleocene–Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeography, Palaeoclimatology, and Palaeoecology, 79: 178–128.Google Scholar
Regal, P.J. 1977. Ecology and evolution of flowering plant dominance. Science, 196: 622629.Google Scholar
Rehan, S.M., Chapman, T.W., Craigie, A.I., Richards, M.H., Cooper, S.J., and Schwarz, M.P. 2010. Molecular phylogeny of the small carpenter bees (Hymenoptera: Apidae: Ceratinini) indicates early and rapid global dispersal. Molecular Phylogenetics and Evolution, 55: 10421054.Google Scholar
Ren, D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science, 280: 8588.Google Scholar
Ren, D., Labandeira, C.C., Santiago-Blay, J.A., Rasnitsyn, A., Shih, C., Bashkuev, A., et al. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326: 840847.Google Scholar
Rice, H.M.A. 1968. Two tertiary sawflies (Hymenoptera-Tenthredinidae) from British Columbia. Geological Survey of Canada Paper, 67–59: i–vi, 121.Google Scholar
Ritchie, A.J. 1993. Superfamily Cynipoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 521536.Google Scholar
Rodriguez, J., Waichert, C., von Dohlen, C.D., Poinar, G., and Pitts, J.P. 2016. Eocene and not Cretaceous origin of spider wasps: fossil evidence from amber. Acta Palaeontologica Polonica, 61: 8996.Google Scholar
Ronquist, F., Nieves-Aldrey, J.-L., Buffington, M.L., Liu, Z., Liljeblad, J., and Nylander, J.A.A. 2015. Phylogeny, evolution and classification of gall wasps: the plot thickens. Public Library of Science One, 10: e0123301.Google Scholar
Roselli, F.L. 1939. Apuntes de geología y paleontología Uruguaya y sobre insectos del Cretácico del Uruguay o descubrimentos de admirables instintos constructivos de esa época. Boletin de la Sociedad Amigos de las Ciencias Naturales ‘Kraglievich-Fontana’, 1: 72102.Google Scholar
Rust, J. 1990. Insekten aus der Fur-Formation von Dänemark (Moler, Ob. Paleozän/Unt. Eozän?). 3 Hymenoptera. Meyniana, 42: 2545.Google Scholar
Rust, J. 1999. Fossil insects from the Fur and Olst Formations (“Mo Clay”) of Denmark (Upper Paleocene/Lowermost Eocene). Proceedings of the First International Palaeoentomological Conference, Moscow 1998. AMBA/AM/PFICM98/1.99. AMBA Projects Publication, Bratislava, Slovakia. Pp. 135–139.Google Scholar
Rust, J. and Andersen, N.M. 1999. Giant ants from the Paleogene of Denmark with a discussion of the fossil history and early evolution of ants (Hymenoptera: Formicidae). Zoological Journal of the Linnean Society, 125: 331348.Google Scholar
Rust, J., Singh, H., Rana, R.S., McCann, T., Singh, L., Anderson, K., et al. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences of the United States of America, 107: 1836018365.Google Scholar
Sarzetti, L.C., Labandeira, C.C., and Genise, J.F. 2008. A leafcutter bee trace fossil from the middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology, 51: 933941.Google Scholar
Schedl, W. 2008. Nachweis eines Männchens von Eodiprion sp. aus dem baltischen Bernstein (Hymenoptera: Symphyta: Diprionidae). Berichte des naturwissenschaftlichmedizinischen Vereins in Innsbruck, 95: 7780.Google Scholar
Schedl, W. 2011. Eine Orussidae aus dem baltischen Bernstein (Hymenoptera: Symphyta). Zeitschrift der Arbeitsgemeinschaft österreichischer Entomologen, 63: 3336.Google Scholar
Schiff, N.M., Goulet, H., Smith, D.R., Boudreault, C., Wilson, A.D., and Scheffler, B.E. 2012. Siricidae (Hymenoptera: Symphyta: Siricoidea) of the Western Hemisphere. Canadian Journal of Arthropod Identification, 21: 1305.Google Scholar
Schultz, T.R. 2000. In search of ant ancestors. Proceedings of the National Academy of Sciences of the United States of America, 97: 1402814029.Google Scholar
Scudder, S.H. 1877. The insects at the tertiary beds at Quesnel. Appendix to Mr. George Mercer Dawson’s report. Report of Progress to the Geological Survey of Canada, 1875–1876: 266280.Google Scholar
Scudder, S.H. 1878. Additions to the insect fauna of the Tertiary beds at Quesnel (British Columbia). Report of Progress to the Geological Survey of Canada, 1876–1877: 457464.Google Scholar
Scudder, S.H. 1879. Appendix A: The fossil insects collected in 1877 by Mr. G. M. Dawson, in the interior of British Columbia. Report of Progress for the Geological Survey of Canada, 1877–1878: 175B185B.Google Scholar
Scudder, S.H. 1890. The tertiary insects of North America. United States Geological Survey of the Territories, Washington, District of Columbia, United States of America.Google Scholar
Sharkey, M.J. 1993. Family Braconidae. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 362395.Google Scholar
Sharkey, M.J. 2007. Phylogeny and classification of Hymenoptera. Zootaxa, 1668: 521548.Google Scholar
Sharkey, M.J., Carpenter, J.M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A.P.G., et al. 2012. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28: 80112.Google Scholar
Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Wang, M., et al. 2012. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37: 155163.Google Scholar
Shi, X., Zhao, Y., Shih, C., and Ren, D. 2013. New fossil helorid wasps (Insecta, Hymenoptera, Proctotrupoidea) from the Jehol Biota, China. Cretaceous Research, 41: 136142.Google Scholar
Shi, X., Zhao, Y., Shih, C., and Ren, D. 2014. Two new species of Archaeohelorus (Hymenoptera, Proctotrupoidea, Heloridae) from the middle Jurassic of China. ZooKeys, 369: 4959.Google Scholar
Shih, C., Feng, H., and Ren, D. 2011. New fossil Heloridae and Mesoserphidae wasps (Insecta, Hymenoptera, Proctotrupoidea) from the middle Jurassic of China. Annals of the Entomological Society of America, 104: 13341348.Google Scholar
Simutnik, S.A. 2014. The first record of Encyrtidae (Hymenoptera, Chalcidoidea) from the Sakhalin Amber. Paleontological Journal, 48: 621623.Google Scholar
Skidmore, R.E. 1999. Checklist of Canadian amber inclusions in the Canadian National Collection of Insects. Electronic Publication. Research Branch Agriculture and Agri-food Canada, Ottawa, Ontario, Canada. Available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.616.5680 [accessed 30 October 2017].Google Scholar
Smith, D.R. 1988. A synopsis of the sawflies (Hymenoptera: Symphyta) of America south of the United States: introduction, Xyelidae, Pamphiliidae, Cimbicidae, Diprionidae, Xiphydriidae, Siricidae, Orussidae, Cephidae. Systematic Entomology, 13: 205261.Google Scholar
Smith, D.R. 2003. A synopsis of the sawflies (Hymenoptera: Symphyta) of America south of the United States: Tenthredinidae (Nematinae, Heterarthrinae, Tenthredininae). Transactions of the American Entomological Society, 129: 145.Google Scholar
Smith, M.E., Singer, B., and Carroll, A. 2003. 40Ar/39Ar geochronology of the Green River Formation, Wyoming. Geological Society of America Bulletin, 115: 549565.Google Scholar
Smith, M.E., Singer, B.S., and Carroll., A.R. 2004. Discussion and Reply: 40Ar/39Ar geochronology of the Green River Formation, Wyoming (reply). Geological Society of America Bulletin, 116: 251256.Google Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2009. Depositional setting, fossil flora and paleoenvironment of the early Eocene Falkland site, Okanagan Highlands, British Columbia. Canadian Journal of Earth Sciences, 46: 811822.Google Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2012. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Palaeobiodiversity and Palaeoenvironments, 92: 309328.Google Scholar
Song, S.N., Tang, P., Wei, S.J., and Chen, X.X. 2016. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Scientific Reports, 6: 20972.Google Scholar
Taeger, A., Blank, S.M., and Liston, A.D. 2010. World catalog of Symphyta (Hymenoptera). Zootaxa, 2580: 11064.Google Scholar
Talamas, E. and Buffington, M. 2015. Fossil Platygastroidea in the National Museum of Natural History, Smithsonian Institution. Journal of Hymenoptera Research, 47: 152.Google Scholar
Tiffney, B.H. 2000. Geographic and climatic influences on the Cretaceous and tertiary history of Euramerican floristic similarity. Acta Universitatis Carolinae Geologica, 44: 516.Google Scholar
Townes, H.K. 1950. The Nearctic species of Gasteruptiidae (Hymenoptera). Proceedings of the United States National Museum, 100: 85145.Google Scholar
Tribe, S. 2005. Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia. Canadian Journal of Earth Sciences, 42: 215230.Google Scholar
Veijalainen, A., Wahlberg, N., Broad, G.R., Erwin, T.L., Longino, J.T., and Sääksjärvi, I.E. 2012. Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. Proceedings of the Royal Society B, 279: 46944698.Google Scholar
Vilhelmsen, L. and Engel, M.S. 2012. Sambia succinica, a crown group tenthredinid from Eocene Baltic amber (Hymenoptera: Tenthredinidae). Insect Systematics & Evolution, 43: 271281.Google Scholar
Wahl, D.B. 1993. Family Ichneumonidae. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 395442.Google Scholar
Wahl, D.B. and Sharkey, M.J. 1993. Superfamily Ichenumonoidea. In Hymenoptera of the world. Edited by H. Goulet and J.T. Huber. Research Branch, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 358509.Google Scholar
Wahlberg, N., Leneveu, J., Kodandaramaiah, U., Peña, C., Nylin, S., Freitas, A.V.L., and Brower, A.V.Z. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/tertiary boundary. Proceedings of the Royal Society B, 276: 42954302.Google Scholar
Wahlberg, N., Wheat, C.W., and Peña, C. 2013. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). Public Library of Science One, 8: e80875.Google Scholar
Wang, B., Rust, J., Engel, M.S., Szwedo, J., Dutta, S., Nel, A., et al. 2014a. A diverse paleobiota in early Eocene Fushun amber from China. Current Biology, 24: 16061610.Google Scholar
Wang, M., Rasnitsyn, A.P., Li, H., Shih, C., Sharkey, M.J., and Dong, R. 2016. Phylogenetic analyses elucidate the inter-relationships of Pamphilioidea (Hymenoptera, Symphyta). Cladistics, 32: 239260.Google Scholar
Wang, M., Rasnitsyn, A.P., Shih, C.K., and Ren, D. 2014b. A new fossil genus in Pamphiliidae (Hymenoptera) from China. Alcheringa, 38: 17.Google Scholar
Wappler, T. 2003. Die Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Mainzer Naturwissenschaftliches Archiv, 27: 1234, 18 plates.Google Scholar
Wappler, T., De Meulemeester, T., Aytekin, A.M., Michez, D., and Engel, M.S. 2012. Geometric morphometric analysis of a new Miocene bumble bee from the Randeck Maar of southwestern Germany (Hymenoptera: Apidae). Systematic Entomology, 37: 784792.Google Scholar
Wappler, T. and Denk, T. 2011. Herbivory in early tertiary Arctic forests. Palaogeography, Palaeoclimatology, Palaeoecology, 310: 283295.Google Scholar
Wappler, T. and Engel, M.S. 2003. The middle Eocene bee faunas of the Eckfeld Maar and Messel, Germany (Hymenoptera: Apoidea). Journal of Paleontology, 77: 908921.Google Scholar
Wappler, T., Labandeira, C.C., Engel, M.S., Zetter, R., and Grímsson, F. 2015. Specialized and generalized pollen-collection strategies in an ancient bee lineage. Current Biology, 25: 17.Google Scholar
Wappler, T., Labandeira, C.C., Rust, J., Frankenhäuser, H., and Wilde, V. 2012. Testing for the effects and consequences of mid Paleogene climate change on insect Herbivory. Public Library of Science One, 7: e40744.Google Scholar
Ward, P.S. 2014. The phylogeny and evolution of ants. Annual Review of Ecology, Evolution, and Systematics, 45: 2343.Google Scholar
Wedmann, S. 1998. First records of fossil tremicine hymenopterans. Palaeontology, 41: 929938.Google Scholar
Wedmann, S., Pouillon, J.-M., and Nel, A. 2014. New Palaeogene horntail wasps (Hymenoptera, Siricidae) and a discussion of their fossil record. Zootaxa, 3869: 3343.Google Scholar
Wedmann, S., Wappler, T., and Engel, M.S. 2009. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae). Naturwissenschaften, 96: 703712.Google Scholar
Wehr, W.C. 1998. Middle Eocene insects and plants of the Okanagon Highlands. In Contributions to the paleontology and geology of the West Coast: in honor of V. Standish Mallory. Edited by J.E. Martin. Burke Museum, Research Report, 6: 99–109.Google Scholar
Wehr, W.C. and Barksdale, L.L. 1996. A checklist of fossil insects from Republic, Washington. Washington Geology, 24: 29.Google Scholar
Weinstein, P. and Austin, A.D. 1991. The host relationships of trigonalyid wasps (Hymenoptera: Trigonalyidae), with a review of their biology and catalogue to world species. Journal of Natural History, 25: 399433.Google Scholar
Weitschat, W. and Wichard, W. 1998. Atlas der Pflanzen und Tiere im Baltischen Bernstein. Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Weitschat, W. and Wichard, W. 2010. Baltic amber. In Biodiversity of fossils in amber from the major world deposits. Edited by D. Penney. Siri Scientific Press, Manchester, United Kingdom. Pp. 80115.Google Scholar
Wenzel, J.W. 1990. A social wasp’s nest from the Cretaceous Period, Utah, USA, and its biogeographical significance. Psyche, 97: 2129.Google Scholar
Wheeler, W.M. 1911. A list of the type species of the genera and subgenera of Formicidae. Annals of the New York Academy of Sciences, 21: 157175.Google Scholar
Wilf, P., Cúneo, N.R., Johnson, K. R., Hicks, J.F., Wing, S.L., and Obradovich, J.D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science, 300: 122125.Google Scholar
Wilf, P. and Johnson, K.R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30: 347368.Google Scholar
Wilf, P., Johnson, K.R., Cúneo, N.R., Smith, M.E., Singer, B.S., and Gandolfo, M.A. 2005a. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. The American Naturalist, 165: 634650.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., Cúneo, N.R., and Dilcher, D.L. 2005b. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 102: 89448948.Google Scholar
Wilf, P., Labandeira, C.C., Johnson, K.R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313: 11121115.Google Scholar
Wilson, E.O. 1985. Ants from the Cretaceous and Eocene amber of North America. Psyche, 92: 205216.Google Scholar
Wilson, E.O. 1987. The arboreal ant fauna of Peruvian Amazon forests: a first assessment. Biotropica, 19: 245251.Google Scholar
Wilson, E.O., Brown, W.L., and Carpenter, F.M. 1967. The first Mesozoic ants, with the description of a new subfamily. Psyche, 74: 119.Google Scholar
Wilson, E.O. and Hölldobler, B. 2005. The rise of the ants: a phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences of the United States of America, 102: 74117414.Google Scholar
Wilson, M.V.H. 1977a. New records of insect families from the freshwater middle Eocene of British Columbia. Canadian Journal of Earth Sciences, 14: 11391155.Google Scholar
Wilson, M.V.H. 1977b. Paleoecology of Eocene lacustrine varves at Horsefly, British Columbia. Canadian Journal of Earth Sciences, 14: 953962.Google Scholar
Wilson, M.V.H. 1978a. Paleogene insect faunas of western North America. Quaestiones Entomologicae, 14: 1334.Google Scholar
Wilson, M.V.H. 1978b. Evolutionary significance of North American Paleogene insect faunas. Quaestiones Entomologicae, 14: 3542.Google Scholar
Wilson, M.V.H. 1982. Early Cenozoic insects: paleoenvironmental biases and evolution of the North American insect fauna. Proceedings of Third North American Paleontological Convention, 2: 585588.Google Scholar
Wolfe, A.P. and Edlund, M.B. 2005. Taxonomy, phylogeny, and paleoecology of Eoseira wilsonii gen. et sp. nov., a middle Eocene diatom (Bacillariophyceae: Aulacoseiraceae) from lake sediments at Horsefly, British Columbia, Canada. Canadian Journal of Earth Sciences, 42: 243257.Google Scholar
Wolfe, J.A., Forest, C.E., and Molnar, P. 1998. Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geological Society of America Bulletin, 110: 664678.Google Scholar
Zachos, J.C., Dickens, G.R., and Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279283.Google Scholar
Zeuner, F.E. and Manning, F.J. 1976. A monograph on fossil bees (Hymenoptera, Apoidea). Bulletin of the British Museum (Natural History). Geology, 27: 149268, 4 plates.Google Scholar
Zhang, H.C., Rasnitsyn, A.P., and Zhang, J.F. 2002. The oldest known scoliid wasps (Insecta, Hymenoptera, Scoliidae) from the Jehol biota of western Liaoning, China. Cretaceous Research, 23: 7786.Google Scholar
Zhang, H.C. and Zhang, J. 2000. Proctotrupoid wasps (Insecta, Hymenoptera) from the Yixian Formation of western Liaoning Province. Acta Micropalaeontologica Sinica, 18: 1128.Google Scholar
Zhang, J. 2004. New representatives of Cretoscolia (Insecta: Hymenoptera: Scoliidae) from eastern China. Cretaceous Research, 25: 229234.Google Scholar
Zhang, J.-F. 1985. New data of the Mesozoic fossil insects from Laiyang in Shandong. Geology of Shandong, 1: 2339. [In Chinese, abstract in English].Google Scholar
Zhang, Q., Zhang, H., Rasnitsyn, A.P., and Jarzembowski, E. 2015. A new genus of Scoliidae (Insecta: Hymenoptera) from the lower Cretaceous of northeast China. Cretaceous Research, 52: 579584.Google Scholar
Zhang, W., Shih, C., Labandeira, C.C., Sohn, J.-C., Davis, D.R., Santiago-Blay, J.A., et al. 2013. New fossil Lepidoptera (Insecta: Amphiesmenoptera) from the middle Jurassic Jiulongshan Formation of Northeastern China. Public Library of Science One, 8: e79500.Google Scholar
Zhelochovtzev, A.N. and Rasnitsyn, A.P. 1972. On some tertiary sawflies (Hymenoptera: Symphyta) from Colorado. Psyche, 79: 315327.Google Scholar
Zherikhin, V.V. 1978. Razvitie I smena melovykh I kainozoiskikh faunisticheskikh kompleksov (trakheinye i khelitserovye) [Development and changes of the Cretaceous and Cenozoic faunal assemblages (Tracheata and Chelicerata)]. Trudy Paleontologicheskogo instituta Akademii Nauk SSSR [Transactions of the Paleontological Institute of the Academy of Sciences of the Union of Soviet Socialist Republics], 165: 1198. [In Russian].Google Scholar
Zherikhin, V.V. 2002. Ecological history of the terrestrial Insects. In History of insects. Edited by A.P. Rasnitsyn and D.L.J. Quicke. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 331338.Google Scholar
Zherikhin, V.V., Sukacheva, I.D., and Rasnitsyn, A.P. 2009. Arthropods in contemporary and some fossil resins. Paleontological Journal, 43: 9871005.Google Scholar