Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T11:23:40.576Z Has data issue: false hasContentIssue false

MODELS OF PERIODIC INUNDATION OF PARASITOIDS FOR PEST CONTROL

Published online by Cambridge University Press:  31 May 2012

Hugh J. Barclay
Affiliation:
Pacific Forest Research Centre, 506 West Burnside Road, Victoria, BC Canada V8Z 1M5
Imre S. Otvos
Affiliation:
Pacific Forest Research Centre, 506 West Burnside Road, Victoria, BC Canada V8Z 1M5
Alan J. Thomson
Affiliation:
Pacific Forest Research Centre, 506 West Burnside Road, Victoria, BC Canada V8Z 1M5

Abstract

Several host–parasitoid models were examined to assess the feasibility of parasitoid inundation as a means of pest control or eradication. The approach is comparative, to assess independently the effects of various ecological factors on the ease of control by this means. For most of the models, there exists a critical inundation rate, I*, above which the host population is eradicated, provided inundative releases continue beyond the time of eradication. The existence of density-dependent mortality in the hosts reduces the time to eradication but does not affect I*. Density dependence in the parasitoids, however, usually increases I*. The existence of hyperparasitoids appears to have no effect on the ease of host eradication.

Résumé

Plusieurs modèles de la relation hôte–parasite sont examinés afin d'évaluer la possibilité du juguler ou d'extirper les ravageurs par des lâchers massifs de parasites. On procède par comparaison, afin d'évaluer indépendamment les effets des divers facteurs écologiques sur la facilité d'obtenir ainsi des résultats. Pour la plupart des modèles, il existe un point critique I*, au-dessus duquel les lâchers anéantissent la population cible, à condition qu'ils se poursuivent au même rythme au-delà du moment de l'annihilation. Chez les organismes cibles, la dépendance à l'égard de la densité avance l'annihilation, mais n'influe pas sur I*. Chez les parasites, la dépendance à l'égard de la densité augmente habituellement I*. L'existence des hyperparasites ne semble aucunement influer sur l'anéantissement des organismes visés.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allee, W.C., Emerson, A.E., Park, O., Park, T., and Schmidt, K.P.. 1949. Principles of animal ecology. W.B. Saunders, Philadelphia.Google Scholar
Barclay, H.J. 1980. Models for the sterile insect release method with the concurrent release of pesticides. Ecol. Model. 11: 167178.Google Scholar
Barclay, H.J. 1981. Population models with the release of chemosterilants for pest control. J. appl. Ecol. 18: 679695.CrossRefGoogle Scholar
Barclay, H.J. 1982. Models for pest control using predator release, habitat management and pesticide release in combination. J. appl. Ecol. 19: 337348.Google Scholar
Barclay, H.J. and Mackauer, M.. 1980. The sterile insect release method for species under predation or parasitism. Res. Pop. Ecol. 22: 136146.CrossRefGoogle Scholar
Barclay, H.J. and van den Driessche, P.. 1977. Predator-prey models with added mortality. Can. Ent. 109: 763768.CrossRefGoogle Scholar
Beddington, J.R., Free, C.A., and Lawton, J.H.. 1975. Dynamic complexity in predator-prey models framed in difference equations. Nature (Lond.) 225: 5860.Google Scholar
Comins, H.N., and Hassell, M.P.. 1976. Predation in multiprey communities. J. theor. Biol. 62: 93114.Google Scholar
DeBach, P. 1974. Biological control by natural enemies. Cambridge Univ. Press, London.Google Scholar
Hassell, M.P. 1978. The dynamics of arthropod predator–prey systems. Princeton Univ. Press, Princeton.Google ScholarPubMed
Hassell, M.P., and Varley, G.C.. 1969. New inductive population model for insect parasites and its bearing on biological control. Nature (Lond.) 223: 11331136.CrossRefGoogle ScholarPubMed
Holling, C.S. 1961. Principles of insect predation. A. Rev. Ent. 6: 163182.CrossRefGoogle Scholar
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. Ent. Soc. Can. 48. 86 pp.Google Scholar
King, E.G., Sanford, J., Smith, J.W., and Martin, D.F.. 1981. Augmentative release of Lixophaga diatraeae [Dip. tachinidae] for suppression of early-season sugarcane borer populations in Louisiana. Entomophaga 26: 5969.Google Scholar
Knipling, E.F. 1970. Influence of host density on the ability of selective parasites to manage insect populations. Proc. Tall Timbers Conf. Ecol. Anim. Control Habitat Manage. 2: 321.Google Scholar
Knipling, E.F. 1972. Simulated population models to appraise the potential for suppressing Sugarcane borer populations by strategic releases of the parasite Lixophaga diatraeae. Environ. Ent. 1: 16.CrossRefGoogle Scholar
Knipling, E.F., and Gilmore, J.E.. 1971. Population density relationships between hymenopterous parasites and their aphid hosts — a theoretical study. U.S.D.A. Tech. Bull. 1428. 34 p.Google Scholar
Knipling, E.F., and McGuire, J.U.. 1968. Population models to appraise the limitations and potentialities of Trichogramma in managing host insect populations. U.S.D.A. Tech. Bull. 1387. 44 p.Google Scholar
May, R.M. 1974. Biological populations with non-overlapping generations: stable points, stable cycles and chaos. Science 186: 645647.CrossRefGoogle Scholar
May, R.M. 1978. Host–parasitoid systems in patchy environments: A phenomenological model. J. Anim. Ecol. 47: 833843.CrossRefGoogle Scholar
Moeck, H.A., and Safranyik, L.. 1984. Assessment of predator and parasitoid control of bark beetles. Can. For. Serv., Pac. For. Res. Cent. Inf. Rep. BC-X-248. Victoria, BC.Google Scholar
Morgan, P.B. 1980. Sustained releases of Spalangia endius Walker (Hymenoptera: Pteromalidae) for the control of Musca domestica L. and Stomoxys calcitrans (L.) (Diptera: Muscidae). J. Kansas Ent. Soc. 53: 367372.Google Scholar
Morgan, P.B., Weidhaas, D.E., and Patterson, R.S.. 1981. Host–parasite relations; Augmentative releases of Spalangia endius Walker used in conjunction with population modeling to suppress field populations of Musca domestica L. (Hymenoptera: Pteromalidae and Diptera: Muscidae). J. Kansas Ent. Soc. 54: 496504.Google Scholar
Murdoch, W.W. 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39: 335354.Google Scholar
Need, J.T., and Burbutis, P.P.. 1979. Searching efficiency of Trichogramma nubiale. Environ. Ent. 8: 224227.CrossRefGoogle Scholar
Nicholson, A.J., and Bailey, V.A.. 1935. The balance of animal populations. Part I. Proc. Zool. Soc. (Lond.) 1935: 551598.Google Scholar
Oatman, E.R., and Platner, G.R.. 1978. Effect of mass releases of Trichogramma pretiosum against Lepidopterous pests on processing tomatoes on Southern California, with notes on host egg population trends. J. econ. Ent. 71: 896900.Google Scholar
Pielou, E.C. 1969. An introduction to mathematical ecology. Wiley-Interscience, NY.Google Scholar
Shorey, H.H. 1973. Behavioural responses to insect pheromones. A. Rev. Ent. 18: 349380.Google Scholar
Solomon, M.E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 135.Google Scholar
Stinner, R.E. 1977. Efficacy of inundative releases. A. Rev. Ent. 22: 515531.Google Scholar
Summers, T.E., King, E.G., Martin, D.F., and Jackson, R.D.. 1976. Biological control of Diatraea saccharalis [Lep.: Pyralidae] in Florida by periodic releases of Lixophaga diatraeae [Dip.: Tachinidae]. Entomophagia 21: 359366.Google Scholar
van Hamburg, H., and Hassell, M.P.. 1984. Density dependence and the augmentative release of egg parasitoids against graminaceous stalkborers. Ecol. Ent. 9: 101108.Google Scholar
Woods, A. 1974. Pest control — a survey. J. Wiley, NY.Google Scholar