Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:38:09.009Z Has data issue: false hasContentIssue false

Insect Mycetomes

Published online by Cambridge University Press:  31 May 2012

A. J. Musgrave
Affiliation:
Department of Zoology, Ontario Agricultural College, Guelph, Ontario

Abstract

After defining the entomological use of the term mycetome a short general account is given of the various supposedly beneficial relationships between insects and internally harboured micro-organisms and the metabolic balance needed. Not all beneficial micro-organisms are harboured in mycetomes or even in mycetocytes, but the present paper is concerned only with insects having mycetomes. It is shown that there is good evidence for accepting the premise that true micro-organisms are found in insect mycetomes and that the micro-organisms supply the insect host with some useful metabolite (s), Special consideration is given to the genus Sitophilus, Here the mycetomal micro-organisms probably supply a useful nutrient that is "essential" only when the diet available to the weevils is inadequate. Whole wheat grain appears to be an adequate diet. Some strains of weevils apparently free of mycetomal micro-organisms are pale in colour, light in weight and particularly susceptible to dietary changes. Weevils reared at temperatures too much above the optimum lose their mycetomal micro-organisms. Although the organisms are pleomorphic there is evidence that their morphology in any one strain of weevil, reared under standard conditions, is constant: and thus it seems the micro-organisms may have taxonomic value in entomology. The possible origin of mycetomes and of the mutualistic associations are discussed and suggestions made about future research.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschner, M. 1934. Studies on the symbiosis of the body louse. I. Elimination of the symbionts by centrifugalisation of the eggs. Parasitology 26: 309314.CrossRefGoogle Scholar
Aschner, M., and Ries, E.. 1933. Das Verhalten der Kleiderlaus bei Ausschaltung ihrer Symbionten. Eine experimentelle Symbiosstudie. Z. Morph. Ökol. Tiere 26: 529590.CrossRefGoogle Scholar
Back, E. A., and Cotton, R. T.. 1926. The granary weevil. Bull. U.S. Dep. Agric. 1393, 36 pp.Google Scholar
Baines, S. 1953. Bacterial symbiosis in the assassin bug. J. gen. Microbiol. 8(1): iv–v.Google Scholar
Baines, S. 1956. The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus (Hemiptera). J. exp. Biol. 33: 533541.Google Scholar
Brecher, G., and Wigglesworth, V. B.. 1944. The transmission of Actinomyces rhodnii Erikson in Rhodnius prolixus and its influence on the growth of the host. Parasitology 35: 220224.Google Scholar
Brooks, M. A. 1963. Symbiosis and aposymbiosis in Arthropods. Symp. Soc. gen. Microbiol. 13: 200231.Google Scholar
Brooks, A., and Richards, A. G.. 1955. Intracellular symbiosis in cockroaches. II. Mitotic division of mycetocytes. Science 122: 242.CrossRefGoogle ScholarPubMed
Buchner, P. 1953. Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser, Basel.CrossRefGoogle Scholar
Bush, G. L., and Chapman, G. B.. 1961. Electron microscopy of symbiotic bacteria in developing oocytes of the American cockroach, Periplaneta americana. J. Bact. 81: 267276.Google Scholar
Carter, Walter. 1935. The symbionts of Pseudococcus brevipes (Ckl.). Ann. ent. Soc. Amer. 28: 6064.CrossRefGoogle Scholar
Carter, W. 1936. The symbionts of Pseudococcus brevipes in relation to a phyto-toxic secretion of the insect. Phytopathology 26: 176183.Google Scholar
Carter, W. 1952. Injuries to plants caused by insect toxins II. Bot. Rev. 18: 680721.CrossRefGoogle Scholar
Caullery, M. 1952. Parasitism and symbiosis. Sidgewick & Jackson, London.Google Scholar
Cleveland, L. R. 1926. Symbiosis among animals with special reference to termites and their intestinal flagellates. Quart. Rev. Biol. 1: 5160.CrossRefGoogle Scholar
Coombs, C. W., and Woodroffe, G. E.. 1962. Some factors affecting mortality of eggs and newly emerged larvae of Ptinus tectus Boieldieu (Col.: Ptinidae). J. Anim. Ecol. 31: 471480.Google Scholar
Crawford, R. E., McDermott, L. A., and Musgrave, A. J.. 1960. Microbial isolations from the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae). Canad. Ent. 92: 577581.CrossRefGoogle Scholar
Fraenkel, G. 1952. The role of symbionts as sources of vitamins and growth factors for their insect hosts. Tijdschr. Ent. 95: 183195.Google Scholar
Gier, H. T. 1947. Intracellular bacteriods in the cockroach. J. Bact. 53: 173189.CrossRefGoogle Scholar
Glaser, R. W. 1946. Intracellular bacteria of the cockroach in relation to symbiosis. J. Parasit. 32: 483489.CrossRefGoogle ScholarPubMed
Goodchild, A. J. P. 1955. The bacteria associated with Triatoma infestans and some other species of Reduviidae. Parasitology 45: 441448.Google Scholar
Gresson, R. A. R., and Threadgold, L. T.. 1960. An electron microscope study of bacteria in the oocytes and follicle cells of Blatta orientalis. Quart. J. Micr. Sci. 101: 295297.Google Scholar
Howe, R. W. 1952. The biology of the rice weevil Calandra oryzae (L.). Ann. appl. Biol. 39: 168180.Google Scholar
Johannsen, O. A., and Butt, F. H.. 1941. Embryology of insects and myriapods. McGraw-Hill, New York.Google Scholar
Kligler, I. J., and Aschner, M.. 1931. Cultivation of rickettsia-like micro-organisms from certain blood-sucking pupipara. J. Bact. 22: 103118.CrossRefGoogle Scholar
Koch, A. 1956a. Symbioten-Vitaminquellen der Tiere. Exposé eines Vortrages in der Gesellschaft für Ernahrungsbiologie E. V. In Kurzberichte für Landwirtschaft und Ernährung Heft 9. W. Brehm, München.Google Scholar
Koch, A. 1956b. The experimental elimination of symbionts and its consequences. Exp. Parasit. 5: 481518.Google Scholar
Koch, A. 1959. Neuere und neueste Untersuchungen aus dem “Paul-Buchner-Institut für experimentelle Symbioseforschung”. Symp. genet. biol. Ital. (Atti del Simposisa Internazionale di Biologia Experimentale) 9: 115.Google Scholar
Koch, A. 1960. Intracellular symbiosis in insects. Annu. Rev. Microbiol. 14: 121139.CrossRefGoogle ScholarPubMed
Lanham, V. N. 1952. Observations on the supposed intracellular micro-organisms in aphids. Science 115: 459.CrossRefGoogle Scholar
Le Blanc, N. N., and Musgrave, A. J.. 1963. Some microbiological studies of two species of aphids, Aphis fabae Scop. and Macrosiphum pisi (Harris) (Hemiptera, Homoptera: Aphididae). Canad. J. Microbiol. 9: 6573.Google Scholar
Mansour, K. 1935. On the micro-organism free and the infected Calandra granaria. Bull. Soc. ent. Égypte 19: 290306.Google Scholar
Murray, J. A. 1937. Technique for paraffin sections of Formol-fixed insect material. J. R. micr. Soc. 57: 15.CrossRefGoogle Scholar
Murray, F. V., and Tiegs, O. W.. 1935. The metamorphosis of Calandra oryzae. Quart. J. micr. Sci. 77: 405495, plates 23-27.Google Scholar
Musgrave, A. J., Ashton, G. C., and Homan, R.. 1963. Quantitative and qualitative effects of temperature and type of grain on populations of Sitophilus (Coleoptera: Curculionidae) and on their mycetomal micro-organisms. Canad. J. Zool. 41: 12451261.CrossRefGoogle Scholar
Musgrave, A. J., Grinyer, I., and Homan, R.. 1962. Some aspects of the fine structure of the mycetomes and mycetomal micro-organisms in Sitophilus (Coleoptera: Curculionidae). Canad. J. Microbiol. 8: 747751.CrossRefGoogle Scholar
Musgrave, A. J., and Homan, R.. 1962. Sitophilus sasakii (Tak.) (Coleoptera: Curculionidae) in Canada: Anatomy and mycetomal symbiotes as valid taxonomic characters. Canad. Ent. 94: 11961197.CrossRefGoogle Scholar
Musgrave, A. J., and McDermott, L. A.. 1961. Some media used in attempts to isolate and culture the mycetomal micro-organisms of Sitophilus weevils. Canad. J. Microbiol. 7: 842843.CrossRefGoogle Scholar
Musgrave, A. J., and Miller, J. J.. 1956. Some micro-organisms associated with the weevils Sitophilus oryza (L.). I. Distribution and description of the organisms. Canad. Ent. 85: 387390.Google Scholar
Musgrave, A. J., and Miller, J. J.. 1955. The possible nature and origin of the mycetomes in Sitophilus weevils. Rep. ent. Soc. Ont. 86: 103104.Google Scholar
Musgrave, A. J., and Miller, J. J.. 1956. Some micro-organisms associated with the weevils Sitophilus granarius (L.) and Sitophilus oryza (L.). II. Population differences of mycetomal micro-organisms in different strains of S. granarius (L.). Canad. Ent. 88: 97100.CrossRefGoogle Scholar
Musgrave, A. J., Monro, H. A. U., and Upitis, E.. 1961. Apparent effect on the mycetomal micro-organisms of repeated exposure of the host insect, Sitophilus granarius (L.) (Coleoptera) to methyl bromide. Canad. J. Microbiol. 7: 280281.Google Scholar
Pant, N. C., and Fraenkel, G.. 1950. The function of symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium (Sitodrepa) paniceum L. Science 112: 498500.Google Scholar
Reddy, D. B. 1950. Influence of sound kernels compared with halved kernels of wheat upon oviposition of the rice weevil. J. econ. Ent. 43: 390391.Google Scholar
Richards, A. G., and Brooks, M. A.. 1958. Internal symbiosis in insects. Annu. Rev. Ent. 3: 3756.Google Scholar
Richards, O. W., and Davies, R. G.. 1957. A general textbook of entomology (by A. D. Imms) Methuen & Co., London. 9th Edition.Google Scholar
Schneider, H. 1956. Morphologische und experimentelle Untersuchungen über die Endosymbiose der Korn- und Reiskäfer (Calandra granaria L., Calandra oryzae L.). Z. Morph. Ökol. Tiere 44: 555625.CrossRefGoogle Scholar
Steinhaus, E. A. 1946. Insect microbiology. Comstock Publishing Co., Ithaca, New York.Google Scholar
Sevintuna, C., and Musgrave, A. J.. 1961. Observations on males and females of Sitophilus granarius (L.) the granary weevil, GG strain, exposed for six generations to allethrin and piperonyl butoxide. Canad. Ent. 93: 545552.CrossRefGoogle Scholar
Tarsa-In-Curia, I. 1933. Nuovo osservazioni sull'organo simbiotico di Calandra oryzae (L.). Arch. Zool. (Ital.), Napoli 18: 247264.Google Scholar
Trager, W. 1952. Mitochondria or micro-organisms? Science 116: 332.CrossRefGoogle ScholarPubMed
Uichanco, L. B. 1924. Studies on the embryogeny and post-natal development of the Aphididae with special reference to the history of the “symbiotic organ”, or “mycetome”. Philipp. J. Sci. 24: 143247.Google Scholar
Vaurie, P. 1951. Revision of the genus Calendra (formerly Sphenophorus) in the United States and Mexico (Coleoptera, Curculionidae). Bull. Amer. Mus. nat. Hist. 98 (2), 186 pp.Google Scholar
Waksman, S. A. 1950. The Actinomycetes. Chronica Botanica. Waltham, Mass.Google Scholar
Wigglesworth, V. B. 1952. Symbiosis in blood-sucking insects. Tijdschr. Ent. 95: 6369.Google Scholar
Wigglesworth, V. B. 1953. Principles of insect physiology. Methuen & Co., London. 5th edition.Google Scholar
Wigglesworth, V. B. 1955. The breakdown of the thoracic gland in the adult insect Rhodnius prolixus. J. exp. Biol. 32: 485491.Google Scholar