Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:14:07.942Z Has data issue: false hasContentIssue false

Host–instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): assessing costs and benefits

Published online by Cambridge University Press:  31 May 2012

Amanda Chau
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
Manfred Mackauer*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Females of Monoctonus paulensis (Ashmead), a solitary parasitoid of aphids, generally select the relatively smaller over equally available larger instars of the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea: Aphididae). Large hosts contain more resources for parasitoid development and hence have presumably higher quality; however, they require more time to subdue and are more likely to escape. We tested the hypothesis that a female’s choice among first (L1), second (L2), third (L3), and fourth (L4) instars of the pea aphid is based on the optimal balance between fitness costs in terms of time and fitness gains in terms of offspring number and size. Prepupal mortality did not vary with host instar, but pupal mortality was greater among parasitoids developing in L4 than in any younger instars. Offspring mortality was not influenced by clutch size in that mortality risk did not differ between parasitoids developing alone and counterparts developing in a clutch. The sex ratio, measured as proportion of daughters among offspring, was female-biased on all four host instars; the degree of bias increased from 0.70 (in L1) to 0.92 (in L4). Parasitoid body size was a function of aphid size at parasitism. Females were larger than males; the magnitude of the difference in body size was constant and independent of host and hence parasitoid size. A female’s potential fecundity as measured by the number of ovarial eggs at eclosion varied with her size and larval ontogeny. The four instars of the pea aphid were ranked in the order L1 > L2 > L3 > L4 both in terms of the number of offspring produced per encountered host and in terms of a female’s time costs; first instars are easier to handle and are more abundant in the field than older instars. The four host types were ranked in the order L2 > L3 > L1 > L4 in terms of the proportion and potential fecundity of daughters among offspring. The observed preference pattern (L1 > L2 > L3 > L4) suggests that, in choosing hosts, females of M. paulensis maximize the number of offspring per unit of search time rather than simply offspring quality.

Résumé

Les femelles de Monoctonus paulensis (Ashmead), un parasitoîde solitaire des pucerons, choisissent généralement les stades de petite taille plutôt que les stades de plus grande taille, tout aussi disponibles, du Puceron du pois, Acyrthosiphon pisum (Harris) (Hemiptera : Aphidoidea : Aphididae). Les hôtes de grande taille contiennent plus de ressources pour le développement des parasitoïdes et sont donc présumément de qualité supérieure; mais il faut plus de temps pour les maîtriser et ils sont plus susceptibles de s’échapper. Nous avons examiné si le choix d’un hôte de premier (L1), de deuxième (L2), de troisième (L3) et de quatrième (L4) stades du puceron repose sur la notion d’équilibre optimal entre les coûts reliés au fitness en fonction du temps et les bénéfices du fitness en nombre et en taille des rejetons. La mortalité des stades qui précèdent la nymphose ne varie pas en fonction du stade de l’hôte, mais la mortalité s’est avérée plus importante chez les nymphes provenant de larves élevées sur des pucerons de L4 que chez celles provenant de larves élevées sur des pucerons plus jeunes. La mortalité des rejetons n’est pas influencée par leur nombre et les risques de mortalité sont les mêmes chez les parasitoïdes solitaires au cours de leur développement que chez ceux qui se développent au sein d’une couvée. Le rapport femelles : mâles, équivalant à la proportion des femelles parmi les rejetons, favorise les femelles chez les hôtes des quatre stades; l’importance de cette tendance augmente de 0,70 (L1) à 0,92 (L4). La taille du parasitoïde varie en fonction de la taille des pucerons au moment de l’infestation. Les femelles sont de plus grande taille que les mâles; l’amplitude de la différence ente la taille des femelles et celle des mâles est constante et indépendante de la talle de l’hôte et donc de la taille des parasitoïdes. La fécondité potentielle d’une femelle, évaluée d’après le nombre d’oeufs ovariens qu’elle contient à l’éclosion de l’adulte, varie selon sa taille et son développement larvaire. Les quatre stades larvaires du Puceron du pois ont été ordonnés L1 > L2 > L3 > L4, en fonction du nombre de rejetons produits par hôte rencontré et des coûts temporels imposés aux femelles; les larves de premier stade sont plus faciles à manipuler sur le terrain et sont plus abondantes que les larves des autres stades. Les quatre types d’hôtes suivent l’ordre L2 > L3 > L1 > L4 en fonction du pourcentage de femelles dans la progéniture et de leur fécondité potentielle. Les préférences des femelles (L1 > L2 > L3 > L4) indiquent qu’au moment du choix d’un hôte, les femelles de M. paulensis maximisent le nombre de leurs rejetons par unité de temps de recherche plutôt que seulement la qualité de leur progéniture.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blumberg, D., Luck, R.F. 1990. Differences in the rates of superparasitism between two strains of Comperiella bifasciata (Howard) (Hymenoptera: Encyrtidae) parasitizing California red scale (Homoptera: Diaspidae): an adaptation to circumvent encapsulation? Annals of the Entomological Society of America 83: 591–7CrossRefGoogle Scholar
Calvert, D.J., van den Bosch, R. 1972 a. Host range and specificity of Monoctonus paulensis (Hymenoptera: Braconidae), a parasite of certain dactynotine aphids. Annals of the Entomological Society of America 65: 422–32CrossRefGoogle Scholar
Calvert, D.J., van den Bosch, R. 1972 b. Behaviour and biology of Monoctonus paulensis (Hymenoptera: Braconidae), a parasite of dactynotine aphids. Annals of the Entomological Society of America 65: 773–9CrossRefGoogle Scholar
Campbell, A. 1974. Seasonal changes in abundance of the pea aphid and its associated parasites in the southern interior of British Columbia. PhD thesis, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
Chau, A., Mackauer, M. 1997. Dropping of pea aphids from feeding site: consequence of parasitism by the wasp, Monoctonus paulensis. Entomologia Experimentalis et Applicata 83: 247–52CrossRefGoogle Scholar
Chau, A., Mackauer, M. 1999. Self-superparasitism in the solitary parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): proximate mechanisms. The Canadian Entomologist 131: 769–77CrossRefGoogle Scholar
Chau, A., Mackauer, M. 2000. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): a preference for small pea aphids. European Journal of Entomology 97: 347–53CrossRefGoogle Scholar
Chow, A., Mackauer, M. 1991. Patterns of host selection by four species of aphidiid (Hymenoptera) parasitoids: influence of host switching. Ecological Entomology 16: 403–10CrossRefGoogle Scholar
Cloutier, C., Duperron, J., Tertuliano, M., McNeil, J.N. 2000. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomologia Experimentalis et Applicata 97: 2940CrossRefGoogle Scholar
Cook, J.M., Crozier, R.H. 1995. Sex determination and population biology in the Hymenoptera. Trends in Ecology and Evolution 10: 281–6CrossRefGoogle ScholarPubMed
Fleiss, J.L. 1981. Statistical methods for rates and proportions. 2nd edition. New York: WileyGoogle Scholar
Gerling, D., Roitberg, B.D., Mackauer, M. 1990. Instar-specific defense of the pea aphid, Acyrthosiphon pisum: influence on oviposition success of the parasite Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Insect Behavior 3: 501–14CrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Griffiths, D.C. 1961. The development of Monoctonus paludum Marshall (Hym., Braconidae) in Nasonovia ribis-nigri on lettuce, and immunity reactions in other lettuce aphids. Bulletin of Entomological Research 52: 147–63CrossRefGoogle Scholar
Hardy, I.C.W. 1994. Sex ratio and mating structure in the parasitoid Hymenoptera. Oikos 69: 320CrossRefGoogle Scholar
Hurlbutt, B. 1987. Sexual size dimorphism in parasitoid wasps. Biological Journal of the Linnean Society 30: 6389CrossRefGoogle Scholar
Kazmer, D.J., Luck, R.F. 1995. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76: 412–25CrossRefGoogle Scholar
King, B.H. 1987. Offspring sex ratios in parasitoid wasps. Quarterly Review of Biology 62: 367–96CrossRefGoogle Scholar
King, B.H. 1993. Sex ratio manipulation by parasitoid wasps. pp 418–41 in Wrensch, D.L., Ebbert, M.A. (Eds), Evolution and diversity of sex ratio in insects and mites. New York: Chapman and HallCrossRefGoogle Scholar
Liu, S.S. 1985. Development, adult size and fecundity of Aphidius sonchi reared in two instars of its aphid host, Hyperomyzus lactucae. Entomologia Experimentalis et Applicata 37: 41–8Google Scholar
Liu, S.S., Morton, R., Hughes, R.D. 1984. Oviposition preferences of a hymenopterous parasite for certain instars of its aphid host. Entomologia Experimentalis et Applicata 35: 249–54Google Scholar
Losey, J.E., Denno, R.F. 1998. The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecological Entomology 23: 5361CrossRefGoogle Scholar
Mackauer, M. 1972. Antennal amputation as a method for bio-marking aphids. Journal of Economic Entomology 65: 1725–7CrossRefGoogle Scholar
Mackauer, M. 1973. Host selection and host suitability in Aphidius smithi. pp 20–9 in Lowe, A.D. (Ed), Perspectives in aphid biology. Christchurch: Entomological Society of New ZealandGoogle Scholar
Mackauer, M. 1996. Sexual size dimorphism in solitary parasitoid wasps: influence of host quality. Oikos 76: 265–72CrossRefGoogle Scholar
Mackauer, M., Chau, A. 2001. Adaptive self superparasitism in a solitary parasitoid wasp: the influence of clutch size on offspring size. Functional Ecology 15. In pressCrossRefGoogle Scholar
Mackauer, M., Sequeira, R. 1993. Patterns of development in insect parasites. pp 123in Beckage, N.E., Thompson, S.N., Federici, B.A. (Eds), Parasites and pathogens of insects. Volume 1: Parasites. Orlando: Academic PressGoogle Scholar
Mackauer, M., Michaud, J.P., Völkl, W. 1996. Host choice by aphidiid parasitoids (Hymenoptera: Aphidiidae): host recognition, host quality, and host value. The Canadian Entomologist 128: 959–80CrossRefGoogle Scholar
Mackauer, M., Sequeira, R., Otto, M. 1997. Growth and development in parasitoid wasps: adaptation to variable host resources. pp 191203in Dettner, K., Bauer, G., Völkl, W. (Eds), Vertical food web interactions: evolutionary patterns and driving forces. Ecological Studies 130. Berlin: SpringerCrossRefGoogle Scholar
Michaud, J.P. 1995. The oviposition behavior of Aphidius ervi and Monoctonus paulensis (Hymenoptera; Aphidiidae): encountering different host species (Homoptera: Aphididae) in sequential patches. Journal of Insect Biology 9: 683–94Google Scholar
Michaud, J.P., Mackauer, M. 1995. Oviposition behavior of Monoctonus paulensis (Hymenoptera: Aphidiidae): factors influencing reproductive allocation to hots and host patches. Annals of the Entomological Society of America 88: 220–6CrossRefGoogle Scholar
Nicol, C.M.Y., Mackauer, M. 1999. The scaling of body size and mass in a host-parasitoid association: influence of host species and stage. Entomologia Experimentalis et Applicata 90: 8392CrossRefGoogle Scholar
Niklas, K.J. 1994. The scaling of plant and animal body mass, length and diameter. Evolution 48: 4454CrossRefGoogle ScholarPubMed
O'Neill, K.M., Skinner, S.W. 1990. Ovarian egg size and number in relation to female size in five species of parasitoid wasps. Journal of Zoology (London) 220: 115–22CrossRefGoogle Scholar
Otto, M., Mackauer, M. 1998. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri: influence of variations in host quality on offspring growth and fitness. Oecologia 117: 353–64CrossRefGoogle ScholarPubMed
Rosenheim, J.A., Hongkham, D. 1996. Clutch size in an obligately siblicidal parasitoid wasp. Animal Behaviour 51: 841–52CrossRefGoogle Scholar
Sequeira, R., Mackauer, M. 1987. Host instar preference of the aphid parasite Praon pequodorum (Hymenoptera: Aphidiidae). Entomologia Generalis 12: 259–65CrossRefGoogle Scholar
Sequeira, R., Mackauer, M. 1992. Nutritional ecology of an insect host–parasitoid association: the pea aphid – Aphidius ervi system. Ecology 73: 183–9CrossRefGoogle Scholar
Sequeira, R., Mackauer, M. 1993. The nutritional ecology of a parasitoid wasp, Ephedrus californicus Baker (Hymenoptera: Aphidiidae). The Canadian Entomologist 125: 423–30CrossRefGoogle Scholar
Singh, R., Pandey, S. 1997. Offspring sex ratio in Aphidiinae (Hymenoptera: Braconidae): a review and bibliography. Journal of Aphidology 11: 6182Google Scholar
Sokal, R.R., Rohlf, F.J. 1995. Biometry. 3rd edition. New York: WH Freeman and CoGoogle Scholar
Streams, F.A. 1971. Encapsulation of insect parasites in superparasitized hosts. Entomologia Experimentalis et Applicata 14: 484–90CrossRefGoogle Scholar
van den Assem, J., van Iersel, J.J.A., Los-den-Hartog, R.L. 1989. Is being large more important for female than male parasitic wasps? Behaviour 108: 160–95CrossRefGoogle Scholar
Visser, M.E. 1994. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). Journal of Animal Ecology 63: 963–78CrossRefGoogle Scholar
Völkl, W., Kroupa, A.S. 1997. Effects of adult mortality risk on parasitoid foraging tactics. Animal Behaviour 54: 349–59CrossRefGoogle Scholar
Weisser, W.W. 1994. Age-dependent foraging behaviour and host-instar preference of the aphid parasitoid Lysiphlebus cardui. Entomologia Experimentalis et Applicata 70: 110CrossRefGoogle Scholar
Weisser, W.W., Houston, A.I., Völkl, W. 1994. Foraging strategies in solitary parasitoids: the trade-off between female and offspring mortality risks. Evolutionary Ecology 8: 587–97CrossRefGoogle Scholar
Wellings, P.M., Morton, R., Hart, P.J. 1986. Primary sex-ratio and differential progeny survivorship in solitary haplo-diploid parasitoids. Ecological Entomology 11: 341–8CrossRefGoogle Scholar
West, S.A., Flanagan, K.E., Godfray, H.C.J. 1996. The relationship between parasitoid size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). Journal of Animal Ecology 65: 631–9CrossRefGoogle Scholar