Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:58:31.925Z Has data issue: false hasContentIssue false

Diversity and phenology of the generalist predator community in apple orchards of Central Washington State (Insecta, Araneae)

Published online by Cambridge University Press:  09 August 2012

Abstract

Predatory insects and spiders were collected from apple orchards in two geographic regions of Central Washington State, United States of America to assess seasonal phenology and diversity of the generalist predator community. Arthropods were collected from orchard canopy every 3–7 days over two growing seasons (March–October) at seven organically managed and two insecticide-free orchards. Over 35 000 specimens and 80 species of spiders (Araneae), ladybeetles (Coleoptera: Coccinellidae), lacewings (Neuroptera), and predatory true bugs (Hemiptera) were collected. Composition of insect and spider communities differed between the two geographic regions. Indicator species analysis identified several species that had a significant association with one of the two regions. Counts of the most common taxa were examined in detail on a calendar date basis to determine seasonal phenology of adult and immature stages. We observed substantial differences among taxa in number of generations, seasonal timing of first appearance in orchards, overwintering stages, and seasonal occurrence of the adult and immature life stages in orchards. Understanding seasonal phenology of natural enemies in orchards is a core requirement in integrated pest management programs for apple pests, and results of this study provide this information for the generalist predator community of orchards in the Pacific Northwest.

Résumé

Nous avons récolté des insectes prédateurs et des araignées dans des pommeraies dans deux régions géographiques du centre de l’état de Washington, États-Unis d'Amérique, afin d’évaluer la phénologie et la diversité saisonnières de la communauté de prédateurs généralistes. Les arthropodes ont été prélevés dans la canopée du verger à tous les 3–7 jours durant deux saisons de croissance (mars–octobre) dans sept pommeraies soumises à la gestion organique et deux sans insecticides. Les récoltes comprennent plus de 35 000 spécimens et 80 espèces d'araignées (Araneae), de coccinelles (Coleoptera: Coccinellidae), de neuroptères (Neuroptera) et de punaises vraies prédatrices (Hemiptera). Les compositions des communautés d'insectes et d'araignées diffèrent entre les deux régions géographiques. Une analyse des espèces indicatrices identifie plusieurs espèces qui ont une association significative avec l'une des deux régions. Un examen détaillé des dénombrements des taxons les plus communs en fonction des dates du calendrier permet de déterminer la phénologie saisonnière des stades adultes et immatures. Il existe des différences importantes entre les taxons en ce qui a trait au nombre de générations, au calendrier saisonnier de la première apparition dans les pommeraies, aux stades d'hivernage et à la présence saisonnière des stades de vie adultes et immatures dans les pommeraies. La compréhension de la phénologie saisonnière des ennemis naturels dans les pommeraies est une information de base essentielle dans les programmes de lutte intégrée contre les ravageurs des pommes et les résultats de notre étude fournissent ces renseignements pour la communauté de prédateurs généralistes des pommeraies du Nord-Ouest Pacifique.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acorn, J. 2007. Ladybugs of Alberta: finding the spots and connecting the dots. The University of Alberta Press, Edmonton, Alberta, Canada.Google Scholar
Bajwa, W.I. AliNiazee, M.T. 2001. Spider fauna in apple ecosystems of western Oregon and its field susceptibility to chemical and microbial insecticides. Journal of Economic Entomology, 94: 6875.CrossRefGoogle ScholarPubMed
Bogya, S., Markó, V., Szinetár, C. 1999. Comparison of pome fruit orchard inhabiting spider assemblages at different geographic scales. Agricultural and Forest Entomology, 1: 261269.CrossRefGoogle Scholar
Bogya, S. Mols, P.J.M. 1996. The role of spiders as predators of insect pests with particular reference to orchards: a review. Acta Phytopathologica et Entomologica Hungarica, 31: 83159.Google Scholar
Brown, M.W. Schmitt, J.J. 2001. Seasonal and diurnal dynamics of beneficial insect populations in apple orchards under different management intensity. Environmental Entomology, 30: 415424.CrossRefGoogle Scholar
Brown, M.W., Schmitt, J.J., Abraham, J. 2003. Seasonal and diurnal dynamics of spiders (Araneae) in West Virginia orchards and the effect of orchard management on spider communities. Environmental Entomology, 32: 830839.CrossRefGoogle Scholar
Carroll, D.P. Hoyt, S.C. 1984. Natural enemies and their effects on apple aphid, Aphis pomi DeGeer (Homoptera: Aphididae), colonies on young apple trees in Central Washington. Environmental Entomology, 13: 469481.CrossRefGoogle Scholar
Chamberlin, R.V. Gertsch, W.J. 1958. The spider family Dictynidae in America north of Mexico. Bulletin of the American Museum of Natural History, 116: 1152.Google Scholar
Chant, D.A. 1956. Predacious spiders in orchards in south-eastern England. Journal of Horticultural Science, 31: 3546.CrossRefGoogle Scholar
Dondale, C.D. 1956. Annotated list of spiders (Araneae) from apple trees in Nova Scotia. The Canadian Entomologist, 88: 697700.CrossRefGoogle Scholar
Dondale, C.D. Redner, J.H. 1978. The crab spiders of Canada and Alaska (Araneae: Philodromidae and Thomisidae). The insects and arachnids of Canada. Part 5. Agriculture Canada, Ottawa.Google Scholar
Dondale, C.D. Redner, J.H. 1982. The sac spiders of Canada and Alaska (Araneae: Clubionidae and Anyphaenidae). The insects and arachnids of Canada. Part 9. Agriculture Canada, Ottawa.Google Scholar
Dondale, C.D. Redner, J.H. 1990. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska (Araneae: Lycosidae, Pisauridae, and Oxyopidae). The insects and arachnids of Canada. Part 17. Agriculture Canada, Ottawa.Google Scholar
Dondale, C.D., Redner, J.H., Paquin, P., Levi, H.W. 2003. The orb-weaving spiders of Canada and Alaska (Araneae: Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae). The insects and arachnids of Canada. Part 23. NRC Research Press, Ottawa.Google Scholar
Dufrêne, M. Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345366.Google Scholar
Flint, M.L. Dreistadt, S.H. 1998. Natural enemies handbook: the illustrated guide to biological pest Control. University of California Press, Berkeley.Google Scholar
Gordon, R.D. 1985. The Coccinellidae (Coleoptera) of America north of Mexico. Journal of the New York Entomological Society, 93: 1912.Google Scholar
Hagen, K.S. 1962. Biology and ecology of predaceous Coccinellidae. Annual Review of Entomology, 7: 289326.CrossRefGoogle Scholar
Hagley, E.A.C. Allen, W.R. 1990. The green apple aphid, Aphis pomi DeGeer (Homoptera: Aphididae), as prey of polyphagous predators in Ontario. The Canadian Entomologist, 122: 12211228.CrossRefGoogle Scholar
Hodek, I. 1973. Biology of Coccinellidae. Dr. W. Junk Publishers, The Hague, The Netherlands.CrossRefGoogle Scholar
Horton, D.R., Broers, D.A., Hinojosa, T., Lewis, T.M., Miliczky, E.R., Lewis, R.R. 2002. Diversity and phenology of predatory arthropods overwintering in cardboard bands placed in pear and apple orchards of Central Washington State. Annals of the Entomological Society of America, 95: 469480.CrossRefGoogle Scholar
Horton, D.R. Lewis, T.M. 2000. Seasonal distribution of Anthocoris spp. and Deraeocoris brevis (Heteroptera: Anthocoridae, Miridae) in orchard and non-orchard habitats of Central Washington. Annals of the Entomological Society of America, 93: 476485.CrossRefGoogle Scholar
Horton, D.R., Miliczky, E.R., Broers, D.A., Lewis, R.R., Calkins, C.O. 2001. Numbers, diversity, and phenology of spiders (Araneae) overwintering in cardboard bands placed in pear and apple orchards of Central Washington. Annals of the Entomological Society of America, 94: 405414.CrossRefGoogle Scholar
Hoyt, S.C. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. Journal of Economic Entomology, 62: 7486.CrossRefGoogle Scholar
Jones, V.P., Brunner, J.F., Grove, G.G., Petit, B., Tangren, G.V., Jones, W.E. 2010. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Management Science, 66: 587595.CrossRefGoogle ScholarPubMed
Jones, V.P., Steffan, S.A., Wiman, N.G., Horton, D.R., Miliczky, E., Zhang, Q.-H., et al. 2011. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biological Control, 56: 98105.CrossRefGoogle Scholar
Jones, V.P., Unruh, T.R., Horton, D.R., Mills, N.J., Brunner, J.F., Beers, E.H., et al. 2009. Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management. Pest Management Science, 65: 13051310.CrossRefGoogle ScholarPubMed
Judd, G.J.R. McBrien, H.L. 1994. Modeling temperature-dependent development and hatch of overwintered eggs of Campylomma verbasci (Heteroptera: Miridae). Environmental Entomology, 23: 12241234.CrossRefGoogle Scholar
Klimaszewski, J. Kevan, D.K.M. 1985. The brown lacewing flies of Canada and Alaska (Neuroptera: Hemerobiidae). Part 1. The genus Hemerobius Linnaeus: systematics, bionomics and distribution. Lyman Entomology Museum and Research Laboratory Memoir, 15: 1119.Google Scholar
Knight, A.L. 2007. Adjusting the phenology model of codling moth (Lepidoptera: Tortricidae) in Washington State apple orchards. Environmental Entomology, 36: 14851493.CrossRefGoogle ScholarPubMed
Kondorosy, E., Markó, V., Cross, J.V. 2010. Heteroptera fauna of apple orchards in south-east England. Acta Phytopathologica et Entomologica Hungarica, 45: 173193.CrossRefGoogle Scholar
Levi, H.W. 1957. The spider genera Enoplognatha, Theridion, and Paidisca in America north of Mexico (Araneae, Theridiidae). Bulletin of the American Museum of Natural History, 112: 1123.Google Scholar
Maddison, W.P. 1996. Pelegrina Franganillo and other jumping spiders formerly placed in the genus Metaphidippus (Araneae: Salticidae). Bulletin of the Museum of Comparative Zoology, 154: 215368.Google Scholar
Madsen, H.F. Madsen, B.J. 1982. Populations of beneficial and pest arthropods in an organic and a pesticide treated apple orchard in British Columbia. The Canadian Entomologist, 114: 10831088.CrossRefGoogle Scholar
Markó, V., Keresztes, B., Fountain, M.T., Cross, J.V. 2009. Prey availability, pesticides and the abundance of orchard spider communities. Biological Control, 48: 115124.CrossRefGoogle Scholar
McCaffrey, J.P. Horsburgh, R.L. 1980. The spider fauna of apple trees in central Virginia. Environmental Entomology, 9: 247252.CrossRefGoogle Scholar
McCune, B. Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
McCune, B. Mefford, M.J. 2011. PC-ORD. Multivariate analysis of ecological data. Version 6.0. MjM Software, Gleneden Beach, Oregon.Google Scholar
McMullen, R.D. Jong, C. 1967. New records and discussion of predators of the pear psylla, Psylla pyricola Forster, in British Columbia. Journal of the Entomological Society of British Columbia, 64: 3540.Google Scholar
Miliczky, E.R., Calkins, C.O., Horton, D.R. 2000. Spider abundance and diversity in apple orchards under three insect pest management programmes in Washington State, U.S.A. Agricultural and Forest Entomology, 2: 203215.CrossRefGoogle Scholar
Miliczky, E. Horton, D.R. 2005. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33: 249259.CrossRefGoogle Scholar
Miliczky, E. Horton, D.R. 2007. Natural enemy fauna (Insecta, Araneae) found on native sagebrush steppe plants in eastern Washington with reference to species also found in adjacent apple and pear orchards. The Pan-Pacific Entomologist, 83: 5065.CrossRefGoogle Scholar
Miliczky, E.R., Horton, D.R., Calkins, C.O. 2008. Observations on phenology and overwintering of spiders associated with apple and pear orchards in south-central Washington. The Journal of Arachnology, 36: 565573.CrossRefGoogle Scholar
Oatman, E.R., Legner, E.F., Brooks, R.F. 1964. An ecological study of arthropod populations on apple in Northeastern Wisconsin: insect species present. Journal of Economic Entomology, 57: 978983.CrossRefGoogle Scholar
Peck, J.E. 2010. Multivariate analysis for community ecologists: step-by-step using PC-ORD. MjM Software Design, Gleneden Beach, Oregon.Google Scholar
Penny, N.D., Tauber, C.A., DeLeon, T. 2000. A new species of Chrysopa from western North America with a key to North American species (Neuroptera: Chrysopidae). Annals of the Entomological Society of America, 93: 776784.CrossRefGoogle Scholar
Rathman, R.J. Brunner, J.F. 1988. Abundance and composition of predators on young apple, Malus domestica Borkhausen, within sagebrush and riparian species pools in North Central Washington. Melanderia, 46: 6681.Google Scholar
Rees, B.E., Anderson, D.M., Bouk, D., Gordon, R.D. 1994. Larval key to genera and selected species of North American Coccinellidae (Coleoptera). Proceedings of the Entomological Society of Washington, 96: 387412.Google Scholar
Rhoades, M.H. 1996. Key to first and second instars of six species of Coccinellidae (Coleoptera) from alfalfa in southwest Virginia. Journal of the New York Entomological Society, 104: 8388.Google Scholar
Sackett, T.E., Buddle, C.M., Vincent, C. 2008. Comparisons of the composition of foliage-dwelling spider assemblages in orchards and adjacent deciduous forest. The Canadian Entomologist, 140: 338347.CrossRefGoogle Scholar
Snyder, W.E. 2009. Coccinellids in diverse communities: which niche fits? Biological Control, 51: 323335.CrossRefGoogle Scholar
Solomon, M.G., Cross, J.V., Fitzgerald, J.D., Campbell, C.A.M., Jolly, R.L., Olszak, R.W., et al. 2000. Biocontrol of pests of apples and pears in northern and central Europe – 3. Predators. Biocontrol Science and Technology, 10: 91128.CrossRefGoogle Scholar
Straub, C.S., Finke, D.L., Snyder, W.E. 2008. Are the conservation of natural enemy biodiversity and biological control compatible goals? Biological Control, 45: 225237.CrossRefGoogle Scholar
Szentkirályi, F. 2001. Lacewings in fruit and nut crops. In Lacewings in the crop environment. Edited by P.K. McEwen, T.R. New and A.E. Whittington. Cambridge University Press, Cambridge, United Kingdom. pp. 172238.CrossRefGoogle Scholar
Tylianakis, J.M. Romo, C.M. 2010. Natural enemy diversity and biological control: making sense of the context-dependency. Basic and Applied Ecology, 11: 657668.CrossRefGoogle Scholar
Ubick, D., Paquin, P., Cushing, P.E., Roth, V. 2005 (eds). Spiders of North America: an identification manual. American Arachnological Society.Google Scholar
Unruh, T.R., Yu, T., Willett, L.S., Garczynski, S.F., Horton, D.R. 2008. Development of monoclonal antibodies to pear psylla (Hemiptera: Psyllidae) and evaluation of field predation by two key predators. Annals of the Entomological Society of America, 101: 887898.CrossRefGoogle Scholar
Williams, T., Valle, J., Viñuela, E. 2003. Is the naturally derived insecticide spinosad® compatible with insect natural enemies? Biocontrol Science and Technology, 13: 459475.CrossRefGoogle Scholar