Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:06:32.933Z Has data issue: false hasContentIssue false

DIFFERENCES IN POST-DIAPAUSE THERMAL REQUIREMENTS FOR EGGS OF TWO RANGELAND GRASSHOPPERS

Published online by Cambridge University Press:  31 May 2012

William P. Kemp
Affiliation:
Rangeland Insect Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Bozeman, Montana, USA59717–0001
Norma E. Sánchez
Affiliation:
Rangeland Insect Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Bozeman, Montana, USA59717–0001

Abstract

A study was conducted to examine the springtime hatching characteristics of Melanoplus sanguinipes (F.) and Aulocara elliotti (Thomas) eggs on rangeland. Laboratory experiments showed that eggs of M. sanguinipes required fewer accumulated degree days (DD) to complete post-diapause development than those of A. elliotti at a constant temperature of 23.3°C. Springtime field observations revealed that A. elliotti nymphs emerged prior to or concurrent with M. sanguinipes. Additionally, results suggest that A. elliotti nymphs emerge over a shorter interval than M. sanguinipes. Much of the variation in springtime emergence could be attributed to species-specific oviposition sites, pod depth, and pod orientation that resulted in A. elliotti eggs accumulating heat more rapidly than M. sanguinipes eggs. Results help explain some of the variation found in egg hatching of these two grasshopper species on rangeland.

Résumé

On a conduit une étude visant à préciser les caractéristiques de l’éclosion printannière des oeufs de Melanoplus sanguinipes (F.) et Aulocara elliotti (Thomas) dans les pâturages. Des expériences en laboratoire ont montré que les oeufs de M. sanguinipes requièrent moins de degrés-jours (DJ) pour compléter leur développement post-diapause que ceux de A. elliotti à la température constante de 23,3°C. Des observations de terrain au printemps ont révélé que les nymphes de A. elliotti émergent avant ou en même temps que celles de M. sanguinipes. De plus, les résultats suggèrent que les nymphes de A. elliotti émergent durant un intervalle plus court que celles de M. sanguinipes. On a pu attribuer une bonne partie de la variation du moment d’émegence à l’utilisation de sites de ponte spécifiques de l’espèce, la profondeur des sacs d’oeufs et leur orientation. Ces facteurs agissent de sorte qu’il s’ensuit une accumulation plus rapide de chaleur par les oeufs de A. elliotti que ceux de M. sanguinipes. Ces résultats expliquent en partie la variation observée de l’éclosion des oeufs chez ces deux espèces de criquets des pâturages.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Env. Ent. 5: 388396.CrossRefGoogle Scholar
Anderson, R.V., Tracy, C.R., and Abramsky, Z.. 1979. Habitat selection in two species of short-horned grasshoppers: the role of thermal and hydric stress. Oecologia 38: 359374.CrossRefGoogle Scholar
Church, N.S., and Salt, R.W.. 1952. Some effects of temperature on development and diapause in eggs of Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Can. J. Zool. 30: 173184.Google Scholar
Gage, S.H., Mukerji, M.K., and Randell, R.L.. 1976. A predictive model for seasonal occurrence of three grasshopper species in Saskatchewan (Orthoptera: Acrididae). Can. Ent. 108: 245253.CrossRefGoogle Scholar
Gillis, J.E., and Possai, K.W.. 1983. Thermal niche partitioning in the grasshoppers Arphia conspersa and Trimerotropis suffusa from a montane habitat in central Colorado. Ecol. Ent. 8: 155161.CrossRefGoogle Scholar
Hewitt, G.B. 1979. Hatching and development of rangeland grasshoppers in relation to forage growth, temperature, and precipitation. Environ. Ent. 8: 2429.Google Scholar
Kemp, W.P. 1986. Thermoregulation in three rangeland grasshopper species. Can. Ent. 118: 335343.Google Scholar
Kemp, W.P., and Onsager, J.A.. 1986. Rangeland grasshoppers (Orthoptera: Acrididae): modeling phenology of natural populations of six species. Environ. Ent. 15: 924930.CrossRefGoogle Scholar
Monk, K.A. 1985. Effect of habitat on the life history strategies of some British grasshoppers. J. Anim. Ecol. 54: 163177.Google Scholar
Moore, H.W. 1948. Variations in fall embryological development in three grasshopper species. Can. Ent. 80: 8388.CrossRefGoogle Scholar
Mukerji, M.K., and Gage, S.H.. 1978. A model for estimating hatch and mortality of grasshopper egg populations based on soil moisture and heat. Ann. ent. Soc. Am. 71: 183190.Google Scholar
Onsager, J.A. 1986. Stability and diversity of grasshopper species in a grassland community due to temporal heterogeneity. Proc. Pan Am. acridol. Soc. 4: 101109.Google Scholar
Onsager, J.A., and Henry, J.E.. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231237.Google Scholar
Parker, J.P. 1930. Some effects of temperature and moisture upon Melanoplus mexicanus mexicanus Saussure and Camnula pellucida Scudder (Orthoptera). Mont. Agric. Exp. Sta. Bull. 223.Google Scholar
Pepper, J.H., and Hastings, E.. 1952. The effects of solar radiation on grasshopper temperatures and activities. Ecology 33: 96103.CrossRefGoogle Scholar
Pickford, R. 1966. The influence of date of oviposition and climatic conditions on hatching of Camnula pellucida (Scudder) (Orthoptera: Acrididae). Can. Ent. 98: 11451159.CrossRefGoogle Scholar
Randell, R.L., and Mukerji, M.K.. 1974. A technique for estimating hatching of natural egg populations of Melanoplus sanguinipes (Orthoptera: Acrididae). Can. Ent. 106: 801812.Google Scholar
Rosenberg, N.J. 1974. Microclimate: the biological environment. John Wiley and Sons, New York. 315 pp.Google Scholar
Shotwell, R.L. 1941. Life histories and habits of some grasshoppers of economic importance on the great plains. U.S.D.A. Tech. Bull. 774.Google Scholar
Slifer, E.H. 1932. Insect development. IV. External morphology of grasshopper embryos of known age and with a known temperature history. J. Morph. 53: 12.CrossRefGoogle Scholar
Van Horn, S.N. 1966 a. Studies on the embryogenesis of Aulocara elliotti (Thomas) (Orthoptera: Acrididae). I. External morphogenesis. J. Morph. 120: 83114.Google Scholar
Van Horn, S.N. 1966 b. Studies on the embryogenesis of Aulocara elliotti (Thomas (Orthoptera: Acrididae). II. Developmental variability and the effects of maternal age and environment. J. Morph. 120: 115134.CrossRefGoogle ScholarPubMed