Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T06:56:19.287Z Has data issue: false hasContentIssue false

RESIDUES OF FOUR SYNTHETIC PYRETHROIDS AND AZINPHOS-METHYL ON APPLE FOLIAGE AND THEIR TOXICITY TO AMBLYSEIUS FALLACIS (ACARI: PHYTOSEIIDAE)1

Published online by Cambridge University Press:  31 May 2012

N. J. Bostanian
Affiliation:
Agriculture Canada, Research Station, St-Jean-sur-Richelieu, Quebec J3B 628
A. Belanger
Affiliation:
Agriculture Canada, Research Station, St-Jean-sur-Richelieu, Quebec J3B 628
I. Rivard
Affiliation:
Agriculture Canada, Research Station, St-Jean-sur-Richelieu, Quebec J3B 628

Abstract

Residue analysis of apple foliage obtained from an orchard treated with the insecticides cypermethrin, fenvalerate, deltamethrin, permethrin, and azinphos-methyl revealed detectable residues on the leaves 8–9 weeks after the last treatment. Laboratory studies of foliage showed that of the synthetic pyrethroids, permethrin was initially as toxic as the other synthetic pyrethroids; however, its toxicity decreased considerably by the 5th and 6th week post-treatment. Azinphos-methyl was the least persistent and toxic insecticide evaluated. Unless new pest-management strategies are developed, the use of synthetic pyrethroids post-bloom in an integrated-pest-management program would not be desirable where Amblyseius fallacis (Garman) is the principal predator of phytophagous mites.

Résumé

Les analyses de résidus d'insecticides sur des feuilles de pommiers provenant d'un verger traité avec chacun des insecticides suivants : cyperméthrine, fenvalerate, deltaméthrine, perméthrine et azinphos-méthyl ont révélé des traces détectables sur les feuilles après huit et neuf semaines de la date du dernier traitement. Des études toxicologiques en laboratoire avec ces feuilles traitées ont montré que parmi les pyréthrinoïdes de synthèse, la perméthrine a été initialement aussi toxique que les autres pyréthrinoïdes de synthèse, mais sa toxicité a diminué considérablement cinq à six semaines après le dernier traitement. L'azinphos-méthyle a été le moins persistant et le moins toxique parmi les insecticides évalués. A moins que des nouvelles stratégies de lutte soient développées, l'emploi des pyréthrinoïdes de synthèse après la floraison ne serait pas souhaitable dans un programme de lutte intégrée où Amblyseius fallacis (Garman) est le prédateur principal des acariens phytophages.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
AliNiazee, M. T. and Cranham, J. E.. 1980. Effects of four synthetic pyrethroids on a predatory mite, Typhlodromus pyri and its prey, Panonychus ulmi on apples in southeast England. Environ. Ent. 9: 436439.CrossRefGoogle Scholar
Bostanian, N. J. 1981. The St-Jean mite cage. Can. Ent. 113: 359360.CrossRefGoogle Scholar
Chiba, M. 1978. A gas chromatographic determination of permethrin isomers on peach foliage. J. environ. Sci. Health, B, 13: 261268.CrossRefGoogle Scholar
Croft, B. A. 1976. Establishing insecticide-resistant phytoseiid mite predators in deciduous tree fruit orchards. Entomophaga 21: 383399.CrossRefGoogle Scholar
Croft, B. A., Wagner, S. W., and Scott, J. G.. 1982. Multiple and cross-resistance to insecticides in pyrethroidresistant strains of the predatory mite, Amblyseius fallacis. Environ. Ent. 11: 161164.CrossRefGoogle Scholar
El-Sayed, G. N. and Knowles, C. O.. 1984. Formamidine synergism of pyrethroid toxicity to two-spotted spider mites (Acari: Tetranychidae). J. econ. Ent. 77: 2330.CrossRefGoogle Scholar
Greenberg, R. S. 1981. Determination of fenvalerate, a synthetic pyrethroid, in grapes, peppers, apples and cottonseeds by gas-liquid chromatography. J. Agric. Food Chem. 29: 856960.CrossRefGoogle ScholarPubMed
Hall, F. W. 1979. Effects of synthetic pyrethroids on major insect and mite pests of apple. J. econ. Ent. 72: 441446.CrossRefGoogle Scholar
Harris, C. R., Svec, H. J., and Chapman, R. A.. 1978. Laboratory and field studies on the effectiveness and persistence of pyrethroid insecticides used for cabbage looper control. J. econ. Ent. 71: 642644.CrossRefGoogle Scholar
Hill, B. D., Charnetski, W. A., Schaalje, G. B., and Schaber, B. D.. 1982. Persistence of fenvalerate in alfalfa: Effects of growth dilution and heat units on residue half-life. J. Agric. Food Chem. 30: 653657.CrossRefGoogle Scholar
Hoyt, S. C., Westigard, P. H., and Burts, E. C.. 1978. Effects of two synthetic pyrethroids on the codling moth, pear psylla and various mite species in northwest apple and pear orchards. J. econ. Ent. 71: 431434.CrossRefGoogle Scholar
Hull, L. A. and Starner, Van R.. 1983. Impact of four synthetic pyrethroids on major natural enemies and pests of apple in Pennsylvania. J. econ. Ent. 76: 122130.CrossRefGoogle Scholar
Ohkawa, H., Kaneko, H., and Miyamoto, J.. 1977. Metabolism of permethrin in bean plants. J. pestic. Sci. 2: 6776.CrossRefGoogle Scholar
Penman, D. R. and Chapman, R. B.. 1980. Woolly apple aphid outbreak following use of fenvalerate in apples in Canterbury, New Zealand. J. econ. Ent. 73: 4951.CrossRefGoogle Scholar
Penman, D. R., Chapman, R. B., and Jesson, K. E.. 1981. Effects of fenvalerate and azinphos-methyl on two-spotted spider mite and phytoseiid mites. Entomologia exp. appl. 30: 9197.CrossRefGoogle Scholar
Riedl, H. and Hoying, S. A.. 1980. Impact of fenvalerate and diflubenzuron on target and non-target arthropod species on Bartlett pears in northern California. J. econ. Ent. 73: 117122.CrossRefGoogle Scholar
Riedl, H. and Hoying, S. A.. 1983. Toxicity and residual activity of fenvalerate to Typhlodromus occidentalis (Acari: Phytoseiidae) and its prey Tetranychus urticae (Acari: Tetranychidae) on pear. Can. Ent. 115: 807813.CrossRefGoogle Scholar
Rock, G. C. 1979. Relative toxicity of two synthetic pyrethroids to a predator Amblyseius fallacis and its prey Tetranychus urticae. J. econ. Ent. 72: 293294.CrossRefGoogle Scholar
Rock, G. D. and Yeargan, R. R.. 1970. Relative toxicity of Plictran miticide to the European red mite, the two-spotted spider mite and the predacious mite Neoseiulus (Typhlodromus) fallacis (family: Phytoseiidae). Down to Earth 26: 14.Google Scholar
Roush, R. T. and Hoy, M. A.. 1978. Relative toxicity of permethrin to a predator Metaseiulus occidentalis and its prey Tetranychus urticae. Environ. Ent. 7: 287288.CrossRefGoogle Scholar
Shwe Yin Tan, C. 1983. Analyses, persistence and degradation of the synthetic pyrethroid insecticides permethrin and fenvalerate. M.Sc. Thesis, Brock Univ., St. Catharines, ON. 131 pp.Google Scholar
Talekar, N. S. 1977. Gas-liquid chromatographic determination of α-cyano-3-phenoxylbenzyl α-isopropyl-4-chlorophenylacetate residues in cabbage. J. Assn. off. anal. Chem. 60: 980–910.Google ScholarPubMed
Whalon, M. E., Croft, B. A., and Mowry, T. M.. 1982. Introduction and survival of susceptible and pyrethroid-resistant strains of Amblyseius fallacis (Acari: Phytoseiidae) in a Michigan apple orchard. Environ. Ent. 11: 10961099.CrossRefGoogle Scholar
Wong, S. W. and Chapman, R. B.. 1979. Toxicity of synthetic pyrethroid insecticides to predacious phytoseiid mites and their prey. Aust. J. agric. Res. 30: 497501.CrossRefGoogle Scholar
Zwick, R. W. and Fields, G. J.. 1978. Field and laboratory evaluations of fenvalerate against several insect and mite pests of apple and pear in Oregon. J. econ. Ent. 71: 793796.CrossRefGoogle Scholar