Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:14:17.443Z Has data issue: false hasContentIssue false

PEST MANAGEMENT OF DOUGLAS-FIR TUSSOCK MOTH (LEPIDOPTERA: LYMANTRIIDAE): A SEQUENTIAL SAMPLING METHOD TO DETERMINE EGG MASS DENSITY

Published online by Cambridge University Press:  31 May 2012

R. F. Shepherd
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
I. S. Otvos
Affiliation:
Pacific Forest Research Centre, Canadian Forestry Service, Victoria, British Columbia V8Z 1M5
R. J. Chorney
Affiliation:
British Columbia Ministry of Forests, Kamloops, British Columbia V2C 2T7

Abstract

A sequential egg-mass sample system for Douglas-fir tussock moth, Orgyia pseudotsugata McDunnough (Lepidoptera: Lymantriidae), was designed, based on visual scanning of the lower branches of Douglas-fir trees, Pseudotsuga menziesii (Mirb.) Franco. A branch was removed from each quadrant from the upper, middle and lower crown level, and from the lowest whorl of a total of 59 non-defoliated trees in 10 areas. No consistent trend in egg-mass density per branch could be found between crown levels and no level proved superior as a representative of the tree. Therefore, the lower whorl of branches was selected for survey purposes because of sampling efficiency. Sample stop lines were determined from egg-mass density and variability data collected on 55 sites and subsequent defoliation estimates were related to these densities. The system is designed as an early detection tool to be used only in non-defoliated stands at the incipient stage of an impending outbreak.

Résumé

Un plan d'échantillonnage séquentiel des masses d'oeufs de la chenille à houppes du Douglas (Orgyia pseudotsugata McD.) a été mis sur pied à partir de l'observation visuelle des branches inferieures de Douglas taxifoliés (Pseudotsuga menziesii (Mirb.) Franco). Dans chaque cadran, une branche a été prélevée dans le bas, le milieu et le haut de la cime et sur la plus basse verticelle de 59 arbres, dans 10 régions. Comme aucune tendance nette de la densité des oeufs par branche n'a pu être trouvée entre les différents niveaux de la cime dans les peuplements infestés, on a choisi, pour plus de commodité, les trois branches les plus basses comme unité d'échantillonnage. Les données techniques des échantillons ont été déterminées à partir des densités et de la variabilité observées dans 55 stations, et les estimations de la défoliation subséquente ont été corrélées à ces densités. Le plan est destiné à la détection précoce du début d'une infestation imminente, uniquement dans les peuplements non défoliés.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cochran, W. G. 1956. Statistical Methods in Snedecor, G. W., Iowa State College Press, Ames. 534 pp.Google Scholar
Condrashoff, S. F. and Grant, J.. 1962. Sampling Douglas-fir tussock moth populations. Can. Dep. For., Bi-mon. Prog. Rep. 18(4): 3.Google Scholar
Dahlsten, D. L., Cameron, E. A., and Copper, W. A.. 1970. Distribution and parasitization of cocoons of the Douglas-fir tussock moth, Hemerocampa pseudotsugata (Lepidoptera: Lymantriidae), in an isolated infestation. Can. Ent. 102: 175181.CrossRefGoogle Scholar
Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Researches Popul. Ecol. Kyoto Univ. 10: 120.Google Scholar
Iwao, S. 1975. A new method of sequential sampling to classify populations relative to a critical density. Researches Popul. Ecol. Kyoto Univ. 16: 281288.Google Scholar
Iwao, S. and Kuno, E.. 1968. Use of regression of mean crowding on mean density for estimating sample size and the transformation of data for the analysis of variance. Researches Popul. Ecol. Kyoto Univ. 10: 210214.Google Scholar
Kuno, E. 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Researches Popul. Ecol. Kyoto Univ. 11: 127136.Google Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Luck, R. F. and Dahlsten, D. L.. 1967. Douglas-fir tussock moth (Hemerocampa pseudotsugata) egg-mass distribution on white fir in northeastern California. Can. Ent. 99: 11931203.CrossRefGoogle Scholar
Luck, R. F. and Dahlsten, D. L.. 1980. Within and between variation of live and parasitized Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), cocoons on white fir in central California and its implications for sampling. Can. Ent. 112: 231238.CrossRefGoogle Scholar
Mason, R. R. 1969. Sequential sampling of Douglas-fir tussock moth populations. U.S. Dep. Agric. For. Serv., Res. Note PNW-102. 11 pp.Google Scholar
Mason, R. R. 1970. Development of sampling methods for the Douglas-fir tussock moth, Hemerocampa pseudotsugata (Lepidoptera: Lymandtriidae). Can. Ent. 102: 836845.CrossRefGoogle Scholar
Mason, R. R. 1977. Sampling low density populations of the Douglas-fir tussock moth by the frequency of occurrence in the lower tree crowns. U.S. Dep. Agric. For. Serv. Res. Pap. PNW-216. 8 pp.Google Scholar
Mason, R. R. 1978. Detecting suboutbreak populations of the Douglas-fir tussock moth by sequential sampling of early larvae in the lower tree crown. U.S. Dep. Agric. For. Serv. Res. Pap. PNW-238. 9 pp.Google Scholar
Onsager, J. A. 1976. The rationale of sequential sampling, with emphasis on its use in pest management. U.S. Dep. Agric. Tech. Bull. 1526. 19 pp.Google Scholar
Shepherd, R. F. (Ed.) 1980. Operational field trials against the Douglas-fir tussock moth with chemical and biological insecticides. Can. For. Serv., Pacif. For. Res. Cent. Inf. Rep. BC-X-201. 19 pp.Google Scholar
Silver, G. T. 1962. The distribution of Douglas-fir foliage by age. For. Chron. 38: 433438.CrossRefGoogle Scholar
Turner, J. 1977. Effect of nitrogen availability on nitrogen cycling in a Douglas-fir stand. For. Sci. 23: 307316.Google Scholar
Wald, A. 1947. Sequential Analysis. Wiley, N.Y.212 pp.Google Scholar
Waters, W. E. 1955. Sequential sampling in forest insects. For. Sci. 1: 6879.Google Scholar
Wickman, B. E. 1978. Tree injury. pp. 66–77 in Brooks, M.H., Stark, R.W. and Campbell, R.W. (Eds.), The Douglas-fir Tussock Moth: A Synthesis. U.S. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar