Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:14:21.681Z Has data issue: false hasContentIssue false

Overwintering adaptations in Arctic sawflies (Hymenoptera: Tenthredinidae) and their parasitoids: cold tolerance1

Published online by Cambridge University Press:  02 April 2012

Leland M. Humble
Affiliation:
Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5 (e-mail: [email protected])

Abstract

Although the extreme winter conditions of Arctic habitats are considered to be important determinants of the faunal composition of Arctic regions, the overwintering biology of most Arctic insects is unknown. A significant proportion of the insect fauna at high latitudes are hymenopterans, yet little information is available on their overwintering strategies. In this study I examined the overwintering strategies of willow gall-forming and catkin-feeding nematine sawflies and their parasitoids. All sawfly species overwintered as prepupae, were freezing-tolerant, and survived exposure to −50 °C. Freezing at high subzero temperatures was initiated by ice nucleators associated with the posterior hind gut wall. Heterogeneity of overwintering habitats with respect to temperature was not a determinant of the overwintering success of these Arctic sawflies. Divergent overwintering mechanisms were evident in the sawfly parasitoid taxa. Endoparasitoid larvae, like their sawfly hosts, were freezing-tolerant. Freezing of immature, feeding endoparasitoid larvae occurred at the freezing point of the host prepupa and was a consequence of the inoculation of the endoparasitoids' fluid compartments by ice crystals growing in the host hemolymph. Peculiarities in the structure of the endoparasitoid larval gut suggest that the site of nucleation is across the gut wall. Outside their hosts, however, endoparasitoid larvae can supercool extensively, and their tolerance of extremely low temperatures is similar to that of their hosts. Overwintering strategies adopted by the ectoparasitoids were also diverse, with both freezing-tolerant and freezing-intolerant species present in the parasitoid community. Freezing-intolerant species could not survive winter temperatures in the field in the absence of an insulating layer of snow.

Résumé

Même si les conditions extrêmes de l'hiver dans les habitats arctiques sont considérées être des facteurs déterminants importants de la composition faunique de ces régions, la biologie de la plupart des insectes arctiques pendant l'hiver reste inconnue. Une proportion importante de la faune entomologique des hautes latitudes est constituée d'hyménoptères; on connaît néanmoins peu de choses sur leurs stratégies pour survivre à l'hiver. La présente étude examine les stratégies d'hiver des mouches-à-scie de la sous-famille des nématinés qui produisent des galles sur les saules et qui se nourrissent des chatons, ainsi que celles de leurs parasitoïdes. Toutes les espèces de mouches-à-scie passent l'hiver à l'état de prénymphes, elles sont résistantes au froid et elles survivent à des expositions à −50 °C. Le gel à des températures élevées sous le point de congélation est initié par des noyaux de formation de glace associés à la paroi du tube digestif postérieur. L'hétérogénéité des habitats utilisés pour passer l'hiver en fonction de la température n'est pas un facteur déterminant de la survie à l'hiver chez ces mouches-à-scie arctiques. Il y a une variété de mécanismes pour survivre à l'hiver chez les taxons parasitoïdes des mouches-à-scie. Les larves d'endoparasitoïdes sont, comme leurs hôtes, tolérantes au gel. Le gel des larves immatures d'endoparasitoïdes qui s'alimentent se produit au point de congélation des prénymphes qui sont leurs hôtes et est causé par l'inoculation dans les compartiments de fluides de l'endoparasitoîde de cristaux qui se développent dans l'hémolymphe de l'hôte. Des caractéristiques particulières de la structure du tube digestif de la larve endoparasitoïde laissent croire que le site de nucléation est situé au-delà de la paroi du tube digestif. À l'extérieur de leur hôte, cependant, les larves endoparasitoïdes peuvent subir une importante surfusion et leur tolérance aux températures extrêmement basses est semblable à celle de leurs hôtes. Les stratégies adoptées par les ectoparasitoïdes sont aussi diverses et la communauté de parasitoïdes comprend à la fois des espèces tolérantes et intolérantes au gel. Les espèces intolérantes ne peuvent survivre aux températures hivernales en nature en l'absence d'une couche isolante de neige.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baust, J.G. 1982. Environmental triggers to cold hardening. Comparative Biochemistry and Physiology A, 73: 563570.Google Scholar
Baust, J.G., and Rojas, R.R. 1985. Review — insect cold hardiness: facts and fancy. Journal of Insect Physiology, 31: 755759.Google Scholar
Baust, J.G., and Zachariassen, K.E. 1983. Seasonally active cell matrix associated ice nucleators in an insect. CryoLetters, 4: 6571.Google Scholar
Danks, H.V. 1978. Modes of seasonal adaptation in the insects. I. Winter survival. The Canadian Entomologist, 110: 11671205.CrossRefGoogle Scholar
Danks, H.V. 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa, Ontario.Google Scholar
Danks, H.V. 1991. Winter habitats and ecological adaptations for winter survival. In Insects at low temperatures. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York. pp. 231249.Google Scholar
Danks, H.V., Kukal, O., and Ring, R.A. 1994. Insect cold-hardiness: insights from the arctic. Arctic, 47: 391404.CrossRefGoogle Scholar
Downes, J.A. 1962. What is an arctic insect? The Canadian Entomologist, 94: 143162.Google Scholar
Downes, J.A. 1964. Arctic insects and their environment. The Canadian Entomologist, 96: 280307.Google Scholar
Duman, J.G., and Patterson, J.L. 1978. The role of ice nucleators in the frost tolerance of overwintering queens of the bald-faced hornet. Comparative Biochemistry and Physiology A, 59: 6972.Google Scholar
Duman, J.G., Morris, J.P., and Castellino, F.J. 1984. Purification and composition of an ice nucleating protein from queens of the hornet Vespula maculata. Journal of Comparative Physiology B, 154(1): 7984.Google Scholar
Duman, J.G., Xu, L., Neven, L.G., Tursman, D., and Wu, D.W. 1991. Hemolymph proteins involved in insect subzero-temperature tolerance: ice nucleators and antifreeze proteins. In Insects at low temperatures. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York. pp. 94127.Google Scholar
Environment Canada. 1981. Monthly record, meteorological observations in northern Canada. Vol. 66. Available from http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html [accessed 6 December 2005].Google Scholar
Environment Canada. 1982 a. Canadian climate normals, 1951–1980. Vol. 2. Temperature. Vol. 3. Precipitation. Atmospheric Environment Service, Climatological Services Division, Downsview, Ontario.Google Scholar
Environment Canada. 1982 b. Monthly record, meteorological observations in northern Canada. Vol. 67. Available from http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html [accessed 6 December 2005].Google Scholar
Hamilton, R.L., Mullins, D.E., and Orcutt, D.M. 1985. Freezing-tolerance in the wood roach Cryptocercus punctulatus (Scudder). Experientia (Basel), 41: 15351537.CrossRefGoogle Scholar
Humble, L.M. 1987. Life histories and overwintering strategies of some Arctic sawflies and their hymenopterous parasitoids. Ph.D. thesis, University of Victoria, Victoria, British Columbia.Google Scholar
Humble, L.M., and Ring, R.A. 1985. Inoculative freezing of a larval parasitoid within its host. CryoLetters, 6: 5966.Google Scholar
Kukal, O. 1991. Behavioural and physiological adaptations to cold in a freeze tolerant arctic insect. In Insects at low temperatures. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York. pp. 276300.CrossRefGoogle Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. In Insects at low temperatures. Edited by Lee, R.E. and Denlinger, D.L.. Chapman and Hall, New York. pp. 1746.CrossRefGoogle Scholar
MacLean, S.F. Jr., 1975. Ecology of tundra invertebrates at Prudhoe Bay, Alaska. In Ecological investigations of the tundra biome in the Prudhoe Bay region, Alaska. Edited by Brown, J.. Biological Papers of the University of Alaska Special Report, 2: 1–215. pp. 115123.Google Scholar
Miller, K. 1969. Freezing tolerance in an adult insect. Science (Washington, D.C.), 166: 105106.CrossRefGoogle Scholar
Miller, K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comparative Biochemistry and Physiology A, 73: 595604.Google Scholar
Miller, L.K., and Werner, R. 1980. Supercooling to –60 °C: an extreme example of freezing avoidance in northern willow gall insects. Cryobiology, 17: 621622.CrossRefGoogle Scholar
Neven, L.G., Duman, J., Low, M.G., Sehl, L.C., and Castellino, F.J. 1989. Purification and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. Journal of Comparative Physiology B, 159: 7182.CrossRefGoogle Scholar
Ohyama, Y., and Asahina, E. 1972. Frost resistance in adult insects. Journal of Insect Physiology, 18: 267282.Google Scholar
Ring, R.A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. Journal of Thermal Biology, 6: 219229.Google Scholar
Ring, R.A. 1982. Freezing-tolerant insects with low supercooling points. Comparative Biochemistry and Physiology A, 73: 606612.CrossRefGoogle Scholar
Ring, R.A., and Tesar, D. 1981. Adaptations to cold in Canadian arctic insects. Cryobiology, 18: 199211.Google Scholar
Rosner, S., and Fuhrer, E. 1996. Zur Uberwinterungssrategie der kleinen fichtenblatwespe, Pristiphora abietina Christ. (Hym., Tenthredinidae). Journal of Applied Entomology, 120: 225230.Google Scholar
Salt, R.W. 1966. Factors influencing nucleation in supercooled insects. Canadian Journal of Zoology, 44: 117133.Google Scholar
Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). Journal of Insect Physiology, 35: 113120.Google Scholar
Sinclair, B.J., Worland, M.R., and Wharton, D.A. 1999. Ice nucleation and freezing tolerance in New Zealand alpine and lowland weta, Hemideinaspp. (Orthoptera; Stenopelmatidae). Physiological Entomology, 24: 5663.CrossRefGoogle Scholar
Sømme, L. 1978. Nucleating agents in the haemolymph of third instar larvae of Eurosta solidaginis (Fitch) (Diptera, Tephritidae). Norwegian Journal of Entomology, 25: 187188.Google Scholar
Sømme, L., and Conradi-Larsen, E.M. 1979. Frost resistance in alpine adult Melaosma collaris (Coleoptera). Oikos, 33: 8084.CrossRefGoogle Scholar
Tanno, K., and Asahina, E. 1964. Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto. Low Temperature Science Series B Biological Sciences, 22: 5970. [In Japanese with English summary.]Google Scholar
Van der Laak, S. 1982. Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comparative Biochemistry and Physiology A, 73: 613620.Google Scholar
Winston, P.W., and Bates, D.H. 1960. Saturated solutions for the control of humidity in biological research. Ecology, 41: 232237.Google Scholar
Zachariassen, K.E. 1980. The role of polyols and nucleating agents in cold-hardy beetles. Journal of Comparative Physiology B, 140: 227234.Google Scholar
Zachariassen, K.E. 1982. Nucleating agents in cold-hardy insects. Comparative Biochemistry and Physiology A, 73: 557562.Google Scholar
Zachariassen, K.E., and Hammel, H.T. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature (London), 262: 285287.CrossRefGoogle ScholarPubMed