Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:12:11.828Z Has data issue: false hasContentIssue false

THE INTRINSIC RATE OF NATURAL INCREASE OF THE GREEN PEACH APHID, MYZUS PERSICAE (SULZER) (HOMOPTERA: APHIDIDAE), ON COLLARDS (BRASSICA OLERACEA L.)

Published online by Cambridge University Press:  31 May 2012

Thomas W. Culliney
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York, USA 14853
David Pimentel
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York, USA 14853

Extract

Demographic analysis of a species population can be useful in gaining insight into its dynamics in a particular environment. The calculated intrinsic rate of increase of a population may be valuable in predicting population performance. As a single, discrete value, it serves as a quantitative measure, or ecological index, of the response of a species to a set of environmental conditions (Birch 1948; Messenger 1964).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, C.A. 1962. The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Aphididae). Can. J. Zool. 40(2): 145156.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17(1): 1526.CrossRefGoogle Scholar
Cornell Recommendations for Commercial Vegetable Production. 1984. Cornell University, Ithaca, New York.Google Scholar
Daiber, C.C. 1970. Cabbage aphids in South Africa: the influence of temperature on their biology. Phytophylactica 2(3): 149156.Google Scholar
DeLoach, C.J. 1974. Rate of increase of populations of cabbage, green peach, and turnip aphids at constant temperatures. Ann. ent. Soc. Am. 67(3): 332340.CrossRefGoogle Scholar
El Din, N.S. 1976. Effects of temperature on the aphid, Myzus persicae (Sulz.), with special reference to critically low and high temperature. Z. Ang. Ent. 80(1): 714.CrossRefGoogle Scholar
Emden, H.F. van, Eastop, V.F., Hughes, R.D., and Way, M.J.. 1969. The ecology of Myzus persicae. A. Rev. Ent. 14: 197270.CrossRefGoogle Scholar
Heathcote, G.D. 1962. The suitability of some plant hosts for the development of the peach-potato aphid, Myzus persicae (Sulzer). Ent. exp. appl. 5(2): 114118.CrossRefGoogle Scholar
Heie, O. 1961. Baldlus pa Kalroer. Tidsskr. Planteavl 65(1): 241259.Google Scholar
Hughes, R.D. 1963. Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J. Anim. Ecol. 32: 393424.CrossRefGoogle Scholar
Lal, R. 1950. Biology and control of Myzus persicae Sulzer as a pest of potato at Delhi. Indian J. Agric. Sci. 20(1): 87100.Google Scholar
MacGillivray, M.E., and Anderson, G.B.. 1958. Development of four species of aphids (Homoptera) on potato. Can. Ent. 90(3): 148155.CrossRefGoogle Scholar
Messenger, P.S. 1964. Use of life tables in a bioclimatic study of an experimental aphid-braconid wasp hostparasite system. Ecology 45(1): 119131.CrossRefGoogle Scholar
Toba, H.H. 1964. Life-history studies of Myzus persicae in Hawaii. J. econ. Ent. 57(2): 290291.CrossRefGoogle Scholar
Weed, A. 1927. Metamorphosis and reproduction in apterous forms of Myzus persicae Sulzer as influenced by temperature and humidity. J. econ. Ent. 20(1): 150157.CrossRefGoogle Scholar
Wyatt, I.J., and Brown, S.J.. 1977. The influence of light intensity, daylength and temperature on increase rates of four glasshouse aphids. J. Appl. Ecol. 14(2): 391399.CrossRefGoogle Scholar