Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T19:07:38.656Z Has data issue: false hasContentIssue false

EFFECTS OF PUPA LIGATIONS ON DEVELOPMENT OF THE ADULT FEMALE SAWFLY, NEODIPRION SERTIFER (HYMENOPTERA: DIPRIONIDAE)1

Published online by Cambridge University Press:  31 May 2012

W. H. Fogal
Affiliation:
Canadian Forestry Service, Petawawa Forest Experiment Station, Chalk River, Ontario K0J 1J0

Abstract

Ligation experiments were conducted on freshly-ecdysed pupae of Neodiprion sertifer (Geoff.) to help identify sources of hormones which might control development of cuticle, rate of heartbeat, egg production, and uric acid depletion in adult females. Ligatures behind the head or thorax have little or no effect on apolysis of abdominal cuticle. Cuticle tanning and initiation of yolk formation are inhibited exclusively by ligatures behind the thorax. Increase in heartbeat rate and ovary weights is inhibited slightly by ligatures behind the head and almost completely by those behind the thorax. Uric acid depletion is inhibited equally by both ligations. The results are discussed in relation to current knowledge of the anatomy of endocrine organs in sawflies and insect endocrine functions in general.

Résumé

On a procédé à des expériences de ligatures sur des pupes de Neodiprion sertifer (Geoff.) après une ecdysis tout fraîche, afin d’aider à identifier les sources d’hormones susceptibles de contrôler le développement de la cuticle, le taux des battements du cœur, la production d’œufs et l’épuisement de l’acide urique chez les femelles adultes. Les ligatures derrière la tête ou le thorax ont peu ou pas d’effet sur l’apolyse de la cuticle abdominale. Le tanin de la cuticule et l’origine de la formation du jaune d’œuf sont inhibés exclusivement parles ligatures derrière le thorax. L’augmentation des battements cardiaques et du poids des ovaires est légèrement retenue par les ligatures derrière la tête et presque entièrement par les ligatures derrière le thorax. L’épuisement de l’acide urique est également empêché par les deux types de ligatures. L’auteur discute des résultats obtenus grâce aux connaissances actuelles de l’anatomie des organes endocriniens chez les tenthrèdes et des fonctions endocrines chez les insectes en général.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bounhiol, J.J. 1942. L'ablation des corps allates au dernier âge larvaire n'affecte pas, ultérieurement, la reproduction chez Bombyx mori. C. r. hebd. Séanc. Acad. Sci., Paris 215: 334336.Google Scholar
Church, N.S. 1955. Hormones and the termination and re-induction of diapause in Cephus cinctus Nort. (Hymenoptera: Cephidae). Can. J. Zool. 33: 339369.CrossRefGoogle Scholar
Doane, W.W. 1973. Role of hormones in insect development, pp. 291497. In Counce, S. J. and Waddington, C. H. (Eds.), Developmental systems Vol. 2 Insects. Acad. Press, New York.Google Scholar
Engelmann, F. 1976. Induction of the insect vitellogenin in vivo and in vitro, pp. 470485. In Gilbert, L. I. (Ed.), The juvenile hormones. Plenum Press, New York.CrossRefGoogle Scholar
Fogal, W.H. and Kwain, M.-J.. 1974. Metabolism and excretion of nitrogen during metamorphosis and egg production in the sawfly, Neodiprion sertifer. J. Insect Physiol. 20: 12871301.CrossRefGoogle ScholarPubMed
Fogal, W.H., Sullivan, C.R., and Kwain, M.-J.. Effect of insect growth regulator possessing juvenile hormone activity on larvae of a pine-defoliating sawfly Diprion similis (Hartig). In preparation.Google Scholar
Fraenkel, G. and Hsiao, C.. 1965. Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J. Insect Physiol. 11: 513556.CrossRefGoogle Scholar
Hinks, C.F. 1973. The neuroendocrine organs of larvae of Neodiprion lecontei, N. swainei, and Diprion hercyniae (Hymenoptera: Diprionidae). Can. Ent. 105: 725731.CrossRefGoogle Scholar
L'Helias, C. 1952. Études des glandes endocrines post-cérébralis et du cerveau de la larve des Lophyrus pini L. et rufus (André) (Hyménoptères). Bull. Soc. Zool. 77: 106112.Google Scholar
Mordue, W. and Goldsworthy, G.J.. 1973. Transaminase levels and uric acid production in adult locusts. Insect Biochem. 3: 419427.CrossRefGoogle Scholar
Raabe, M., Baudry, N., Grillot, J.-P., and Provansal, A.. 1971. Les organes périsympathiques des insectes ptérygotes. Distribution caractères généraux. C. r. Acad. Paris 273: 23242327.Google Scholar
Slama, K. 1964. Physiology of sawfly metamorphosis. 2. Hormonal activity during diapause and development. Acta Soc. ent. Cechoslov. 61: 210219.Google Scholar
Williams, C.M. 1952. Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol. Bull. mar. biol. Lab., Woods Hole 103: 120138.CrossRefGoogle Scholar
Williams, C.M. 1954. Isolation and identification of the prothoracic gland hormone of insects. Anat. Rec. 120: 743.Google Scholar
Willis, J.H. 1974. Morphogenetic action of insect hormones. A. Rev. Ent. 19: 97115.Google Scholar
Wyatt, G.R. 1972. Insect hormones, pp. 385490. In Litwack, G. (Ed.), Bio-chemical actions of hormones, Vol. 2. Acad. Press, New York.CrossRefGoogle Scholar