Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T06:34:49.776Z Has data issue: false hasContentIssue false

Baseline egg load of southern pine beetle parasitoid complex

Published online by Cambridge University Press:  31 May 2012

Sherah L. VanLaerhoven*
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, United States 72701
Tanya L. Hanano
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, United States 72701
Fred M. Stephen
Affiliation:
Department of Entomology, University of Arkansas, Fayetteville, Arkansas, United States 72701
*
1Corresponding author (e-mail: [email protected]).

Abstract

Egg load of newly emerged adult parasitoids of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), was examined. Infested bark was collected from D. frontalis infestations in southwestern Arkansas (Clark and Montgomery counties; 1995), the Bankhead National Forest in Alabama (1999), and the Talladega National Forest in Alabama (1998–2000) between June and September of each collection year. Newly emerged parasitoid females were dissected and numbers of mature and immature eggs counted. There was no significant difference in number of eggs within a species and between parasitoids from the Bankhead National Forest compared with those from the Talladega National Forest in Alabama in 1999. There were differences in number of eggs within a species between years at the same location. Dendroctonus frontalis parasitoids in the family Pteromalidae (Hymenoptera) had the most mature eggs, followed by Braconidae (Hymenoptera) and Eurytomidae (Hymenoptera). Within the D. frontalis parasitoids in the family Pteromalidae, Dinotiscus dendroctoni (Ashmead) and Heydenia unica Cook and Davis had more mature eggs than did Roptrocerus xylophagorum Ratzeburg. Within the D. frontalis parasitoids in the family Braconidae, Meteorus hypophloei Cushman females contained the most mature eggs, followed by Dendrosoter sulcatus Muesebeck, Spathius pallidus Ashmead, and Coeloides pissodis (Ashmead). These data constitute a foundation for defining baseline egg load of the D. frontalis parasitoid complex.

Résumé

Nous avons examiné la quantité d’oeufs présents chez des parasitoïdes adultes fraîchement émergés du dendroctone méridional du pin, Dendroctonus frontalis Zimmermann (Coleoptera : Scolytidae). De l’écorce a été récoltée sur des pins dans des forêts infestées par D. frontalis dans le sud-ouest de l’Arkansas (comtés de Clark et de Montgomery; 1995) et dans les forêts nationales de Bankhead (1999) et de Talladega (1998–2000) en Alabama, entre juin et septembre, chaque année de récolte. Les femelles parasitoïdes fraîchement émergées ont été disséquées et on y a dénombré les oeufs immatures et les oeufs à maturité. Il n’y avait pas de différence significative entre le nombre d’oeufs des parasitoïdes d’une espèce dans la forêt de Bankhead et celui des parasitoïdes de la même espèce dans la forêt de Talladega en Alabama en 1999. Il y avait des différences dans le nombre d’oeufs d’une espèce d’une année à l’autre au même endroit. Ce sont les parasitoïdes de D. frontalis de la famille des Pteromalidae (Hymenoptera) qui contenaient le plus grand nombre d’oeufs arrivés à maturité, suivis des Braconidae (Hymenoptera) et des Eurytomidae (Hymenoptera). Parmi les parasitoïdes de D. frontalis de la famille des Pteromalidae, Dinosticus dendroctoni (Ashmead) et Heydenia unica Cook et Davis avaient plus d’oeufs matures que Roptrocerus xylophagorum Ratzeburg. Chez ceux de la famille des Braconidae, les femelles de Meteorus hypophloei Cushman contenaient le plus grand nombre d’oeufs avancés, suivis de Dendrosoter sulcatus Muesebeck, de Spathius pallidus Ashmead et de Coeloides pissodis (Ashmead). Ce sont là des données de base pour des études sur le nombre-type d’oeufs chez les espèces du complexe de parasitoïdes de D. frontalis.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berisford, C.W. 1980. Natural enemies and associated organisms. pp 3152in Thatcher, R.C., Searcy, J.L., Coster, J.E., Hertel, G.D. (Eds), The southern pine beetle. United States Department of Agriculture Forest Service Technical Bulletin 1631Google Scholar
Billings, R.F. 1980. Direct control. pp 179–92 in Thatcher, R.C., Searcy, J.L., Coster, J.E., Hertel, G.D. (Eds), The southern pine beetle. United States Department of Agriculture Forest Service Technical Bulletin 1631Google Scholar
Bushing, R.W. 1967. Parasites of the western pine beetle, Dendroctonus brevicomis Le Conte (Coleoptera: Scolytidae) with particular reference to Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Torymidae), PhD dissertation, University of California, BerkeleyGoogle Scholar
Camors, F.J. Jr, Payne, T.L. 1972. Response of Heydenia unica (Hymenoptera: Pteromalidae) to Dendroctonus frontalis (Coleoptera: Scolytidae) pheromones and a host-tree terpene. Annals of the Entomological Society of America 65: 31–3CrossRefGoogle Scholar
Collier, T.R., Murdoch, W.W., Nisbet, R.M. 1994. Egg load and the decision to host-feed in the parasitoid, Aphytis melinus. Journal of Animal Ecology 63: 299306CrossRefGoogle Scholar
Cook, S.P., Hain, F.P. 1985. Comparison of loblolly and shortleaf pine bolts as hosts of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Environmental Entomology 14: 332–5CrossRefGoogle Scholar
Dahlsten, D.L., Whitmore, M.C. 1989. Potential for biological control of Dendroctonus and Ips bark beetles: the case for and against the biological control of bark beetles. pp 319in Kulhavy, D.L., Miller, M.C. (Eds), Potential for biological control of Dendroctonus and Ips bark beetles. Nacogdoches, Texas: Stephen F Austin State UniversityGoogle Scholar
Dixon, W.N., Payne, T.L. 1980. Attraction of entomophagous and associate insects of the southern pine beetle to beetle- and host tree-produced volatiles. Journal of the Georgia Entomological Society 15: 378–89Google Scholar
Drost, Y.C., Carde, R.T. 1992. Influence of host deprivation on egg load and oviposition behaviour of Brachymeria intermedia, a parasitoid of gypsy moth. Physiological Entomology 17: 230–4CrossRefGoogle Scholar
Flanders, S.E. 1950. Regulation of ovulation and egg disposal in the parasitic Hymenoptera. The Canadian Entomologist 82: 134–40CrossRefGoogle Scholar
Foster, M.A., Ruesink, W.G. 1984. Influence of flowering weeds associated with reduced tillage in corn on a black cutworm (Lepidoptera: Noctuidae) parasitoid, Meteorus rubens (Nees von Esenbeck). Environmental Entomology 13: 664–8CrossRefGoogle Scholar
Fuester, R.W., Taylor, P.B., Peng, H., Swan, K. 1993. Laboratory biology of a uniparental strain of Meteorus pulchricornis (Hymenoptera: Braconidae), an exotic larval parasite of the gypsy moth (Lepidoptera: Lymantriidae). Annals of the Entomological Society of America 86: 298304CrossRefGoogle Scholar
Gargiullo, P.M., Berisford, C.W. 1981. Effects of host density and bark thickness on the densities of parasites of the southern pine beetle. Environmental Entomology 10: 392–9CrossRefGoogle Scholar
Grafton-Cardwell, E.E. 1982. Ovipositional response of Meteorus leviventris (Hymenoptera: Braconidae) to various densities of Agrotis ipsilon (Lepidoptera: Noctuidae). Environmental Entomology 11: 1026–8CrossRefGoogle Scholar
Grant, J.F., Shepard, M. 1984. Laboratory biology of Meteorus autographae (Hymenoptera: Braconidae), an indigenous parasitoid of soybean looper (Lepidoptera: Noctuidae) larvae. Environmental Entomology 13: 838–42CrossRefGoogle Scholar
Hanano, T.L. 1996. Effect of nutrition on egg production in adult hymenopterous parasitoids of southern pine beetle Dendroctonus frontalis Zimmermann. MSc thesis, University of Arkansas, FayettevilleGoogle Scholar
Iwata, K. 1959. The comparative anatomy of the ovary in Hymenoptera. Part III. Braconidae (including Aphidiidae) with descriptions of ovarian eggs. Kontyu 27: 231–40Google Scholar
Jones, M.J., Stephen, F.M. 1994. Effect of temperature on development of hymenopterous parasitoids of Dendroctonus frontalis (Coleoptera: Scolytidae). Environmental Entomology 23: 457–63CrossRefGoogle Scholar
Kenis, M. 1997. Biology of Coeloides sordidator (Hymenoptera: Braconidae), a possible candidate for introduction against Pissodes strobi (Coleoptera: Curculionidae) in North America. Biocontrol Science and Technology 7: 153–64CrossRefGoogle Scholar
Kennedy, B.H. 1970. Dendrosoter protuberans (Hymenoptera: Braconidae), an introduced larval parasite of Scolytus multistriatus. Annals of the Entomological Society of America 63: 351–8CrossRefGoogle Scholar
King, P.E. 1963. The rate of egg resorption in Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) deprived of hosts. Proceedings of the Royal Entomological Society of London Series A General Entomology 38: 98100CrossRefGoogle Scholar
King, P.E., Richards, J.G. 1969. Oogenesis in Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Proceedings of the Royal Entomological Society of London Series A General Entomology 44: 143157CrossRefGoogle Scholar
Kruger, K., Mills, N.J. 1990. Observations on the biology of three parasitoids of the spruce bark beetle, Ips typographus (Col., Scolytidae): Coeloides bostrychorum, Dendrosoter middendorffii (Hym., Braconidae) and Rhopalicus tutela (Hym., Pteromalidae). Journal of Applied Entomology 110: 281–91CrossRefGoogle Scholar
Kudon, L.H., Berisford, C.W. 1980. Influence of brood hosts on host preferences of bark beetle parasites. Nature (London) 283: 288–90CrossRefGoogle Scholar
Kudon, L.H., Berisford, C.W. 1981. An olfactometer for bark beetle parasites. Journal of Chemical Ecology 7: 359–66CrossRefGoogle ScholarPubMed
Mathews, P.L. 1997. Effects of food and environment on life history parameters of parasitoids of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Scolytidae). PhD dissertation, University of Arkansas, FayettevilleGoogle Scholar
Mathews, P.L., Stephen, F.M. 1997. Effect of artificial diet on longevity of adult parasitoids of Dendroctonus frontalis (Coleoptera: Scolytidae). Environmental Entomology 26: 961–5CrossRefGoogle Scholar
Mills, N.J., Kruger, K., Schlup, J. 1991. Short-range host location mechanisms of bark beetle parasitoids. Journal of Applied Entomology 111: 3344CrossRefGoogle Scholar
Price, T.S., Doggett, C.A., Pye, J.M., Holmes, T.P. 1992. A history of southern pine beetle outbreaks in the southeastern United States. Macon: Georgia Forestry CommissionGoogle Scholar
Ryan, R.B., Rudinsky, J.A. 1962. Biology and habits of the Douglas-fir beetle parasite, Coeloides brunneri Viereck (Hymenoptera: Braconidae), in western Oregon. The Canadian Entomologist 94: 748–64CrossRefGoogle Scholar
Samson, P.R. 1984. The biology of Roptrocerus xylophagorum [Hym.: Torymidae], with a note on its taxonomic status. Entomophaga 29: 287–98CrossRefGoogle Scholar
SAS Inc. 1994. SAS for Windows, version 6.10. Cary, North Carolina: SAS Institute IncGoogle Scholar
Stein, C.R., Coster, J.E. 1977. Distribution of some predators and parasites of the southern pine beetle in two species of pine. Environmental Entomology 6: 689–94CrossRefGoogle Scholar
Stephen, F.M. 1995. Potential for suppressing southern pine beetle populations by enhancing effectiveness of their hymenopteran parasitoids. pp 226–40 in Hain, F.P., Salom, S.M., Payne, T.L., Raffa, K.F. (Eds), Behavior, population dynamics and control of forest insects. Wooster: Ohio Agricultural Research and Development Center, Ohio State UniversityGoogle Scholar
Stephen, F.M., Browne, L.E. 2000. Application of Eliminade™ parasitoid food to boles and crowns of pines (Pinaceae) infested with Dendroctonus frontalis (Coleoptera: Scolytidae). The Canadian Entomologist 132: 983–5CrossRefGoogle Scholar
Stephen, F.M., Berisford, C.W., Dahlsten, D.L., Fenn, P., Moser, J.C. 1993. Invertebrate and microbial associates. pp 129153in Schowalter, T.D., Filip, G. (Eds), Beetle–pathogen interactions in conifer forests. London: Academic PressGoogle Scholar
Stephen, F.M., Lih, M.P., Browne, L.E. 1997. Augmentation of Dendroctonus frontalis parasitoid effectiveness by artificial diet. pp 1522in Gregoire, J.C., Liebhold, A.M., Stephen, F.M., Day, K.R., Salom, S.M. (Eds), Proceedings of the International Union of Forest Research Organizations (IUFRO) on Integrating Cultural Tactics into the Management of Bark Beetle and Reforestation Pests, Vallombrosa, Italy, 1–3 September, 1996. Radnor, Pennsylvania: United States Department of Agriculture Forest Service, Northeastern Forest Experiment StationGoogle Scholar
Sullivan, B.T., Berisford, C.W., Dalusky, M.J. 1997. Field response of southern pine beetle parasitoids to some natural attractants. Journal of Chemical Ecology 23: 837–56CrossRefGoogle Scholar
Thatcher, R.C. 1960. Bark beetles affecting southern pines: a review of current knowledge. United States Department of Agriculture Forest Service Southern Forest Experiment Station Occasional Paper 180Google Scholar
Thatcher, R.C., Searcy, J.L., Coster, J.E., Hertel, G.D. (Editors). 1980. The southern pine beetle. United States Department of Agriculture Forest Service Technical Bulletin 1631Google Scholar
Thireau, J., Régnière, J. 1995. Development, reproduction, voltinism and host synchrony of Meteorus trachynotus with its hosts Choristoneura fumiferana and C. rosaceana. Entomologia Experimentalis et Applicata 76: 6782CrossRefGoogle Scholar
VanLaerhoven, S.L. 2001. Foraging behavior and reproductive biology of the southern pine beetle, Dendroctonus frontalis Zimmermann, parasitoid complex. PhD dissertation, University of Arkansas, FayettevilleGoogle Scholar
Wright, E.J., Laing, J.E. 1978. The effects of temperature on development, adult longevity and fecundity of Coleomegilla maculata Lengi and its parasite, Perilitus coccinellae. Proceedings of the Entomological Society of Ontario 109: 3347Google Scholar