Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T05:13:07.897Z Has data issue: false hasContentIssue false

MULTI-BUBBLE SOLUTIONS FOR SLIGHTLY SUPER-CRITICAL ELLIPTIC PROBLEMS IN DOMAINS WITH SYMMETRIES

Published online by Cambridge University Press:  09 June 2003

MANUEL DEL PINO
Affiliation:
Departamento de Ingeniería, Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
PATRICIO FELMER
Affiliation:
Departamento de Ingeniería, Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
MONICA MUSSO
Affiliation:
Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24 – 10129 Torino, [email protected]
Get access

Abstract

The aim of this paper is to show the existence of solutions with an arbitrarily large number of bubbles for the slightly super-critical elliptic problem $-\Delta u=u^{{(N+2)/(N-2)} +\ve }$ in $\Omega$, subject to the conditions that $u>0$ in $\Omega$, and $u=0$ on $\partial \Omega$, where $\ve >0$ is a small parameter and $\Omega \subset \RR^N$ is a bounded domain with certain symmetries, for instance an annulus or a torus in $\RR^3$.

Type
Notes and Papers
Copyright
© The London Mathematical Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)