We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a result on the existence and uniqueness of the solution of a new feature-preserving nonlinear nonlocal diffusion equation for signal denoising for the one-dimensional case. The partial differential equation is based on a novel diffusivity coefficient that uses a nonlocal automatically detected parameter related to the local bounded variation and the local oscillating pattern of the noisy input signal.
We study the isomorphic structure of
$(\sum {\ell }_{q})_{c_{0}}\ (1< q<\infty )$
and prove that these spaces are complementably homogeneous. We also show that for any operator T from
$(\sum {\ell }_{q})_{c_{0}}$
into
${\ell }_{q}$
, there is a subspace X of
$(\sum {\ell }_{q})_{c_{0}}$
that is isometric to
$(\sum {\ell }_{q})_{c_{0}}$
and the restriction of T on X has small norm. If T is a bounded linear operator on
$(\sum {\ell }_{q})_{c_{0}}$
which is
$(\sum {\ell }_{q})_{c_{0}}$
-strictly singular, then for any
$\epsilon>0$
, there is a subspace X of
$(\sum {\ell }_{q})_{c_{0}}$
which is isometric to
$(\sum {\ell }_{q})_{c_{0}}$
with
$\|T|_{X}\|<\epsilon $
. As an application, we show that the set of all
$(\sum {\ell }_{q})_{c_{0}}$
-strictly singular operators on
$(\sum {\ell }_{q})_{c_{0}}$
forms the unique maximal ideal of
$\mathcal {L}((\sum {\ell }_{q})_{c_{0}})$
.