Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T03:48:21.007Z Has data issue: false hasContentIssue false

Uniformly convexifying operators in classical Banach spaces

Published online by Cambridge University Press:  17 April 2009

Manuela Basallote
Affiliation:
Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros Industriales, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain e-mail: [email protected]
Manuel D. Contreras
Affiliation:
Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros Industriales, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain e-mail: [email protected]
Santiago Díaz-Madrigal
Affiliation:
Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros Industriales, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain a new characterisation of finite representability of operators and present new results about uniformly convexifying, Rademacher cotype and Rademacher type operators on some classical Banach spaces, including JB* -triples and spaces of analytic functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Basallote, M. and Díaz-Madrigal, S., ‘Finite representability of operators in the sense of Bellenot’, (preprint).Google Scholar
[2]Beauzamy, B., Opérateurs de type Rademacher entre espaces de Banach, Séminaire Maurey-Schwartz, 1975–1976, Exposés VI–VII (École Polytech., Paris, 1976).Google Scholar
[3]Beauzamy, B., ‘Opérateurs uniformément convexifiants’, Studia Math. 57 (1976), 103139.CrossRefGoogle Scholar
[4]Beauzamy, B., ‘Quelques propriétés des opérateurs uniformément convexifiants’, Studia Math. 60 (1977), 211222.CrossRefGoogle Scholar
[5]Beauzamy, B., ‘Propriété de Banach-Saks’, Studia Math. 66 (1980), 227235.CrossRefGoogle Scholar
[6]Beauzamy, B., Introduction to Banach spaces and their geometry, North-Holland Math. Studies 68 (North-Holland, Amsterdam, New York, 1982).Google Scholar
[7]Bellenot, S.F., ‘Local reflexivity of normed spaces, operators, and Fréchet spaces’, J. Funct. Anal. 59 (1984), 111.CrossRefGoogle Scholar
[8]Chu, C.-H. and Iochum, B., ‘Weakly compact operators on Jordan triples’, Math. Ann. 281 (1988), 451458.CrossRefGoogle Scholar
[9]Chu, C.-H. and Mellon, P., ‘JB*-triples have Pelczyński's property V’, Manuscripta Math. 93 (1997), p. 337347.CrossRefGoogle Scholar
[10]Contreras, M.D. and Diaz, S., ‘Some Banach space properties of the duals of the disc algebra and H ’, Michigan. Math. J. (to appear).Google Scholar
[11]Diestel, J. and Seifert, C.J., ‘The Banach-Saks ideal, I. Operators acting on C(ω)’, Comment. Math., Special Issue 1 (1978), 109118.Google Scholar
[12]Dineen, S., ‘The second dual of a JB*-triple system’, in Complex analysis, functional analysis and approximation theory, (Mujica, J., Editor), North-Holland Math. Stud. (North-Holland, Amsterdam, New York, 1986), pp. 6769.Google Scholar
[13]Heinrich, S., ‘Finite representability and super-ideals of operators’, Dissertationes Math. 172 (1980).Google Scholar
[14]Heinrich, S., ‘Ultraproducts in Banach space theory’, J. Reine Angew. Math. 313 (1980), 72104.Google Scholar
[15]James, R.C., ‘Uniformly non-square Banach spaces’, Ann. of Math. 80 (1964), 542550.CrossRefGoogle Scholar
[16]Jarchow, H., ‘The structure of some Banach spaces related to weakly compact operators on spaces C(K) and on C*-algebrasConfer. Sem. Mat. Univ. Bari. 216 (1986).Google Scholar
[17]Jarchow, H., ‘On weakly compact operators on C*-algebras’, Math. Ann. 273 (1986), 341343.CrossRefGoogle Scholar
[18]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces II. Function spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[19]Matter, U., ‘Factoring through interpolation spaces and super-reflexive Banach spaces’, Rev. Roumaine Math. Pures Appl. 34 (1989), 147156.Google Scholar
[20]Pfitzner, H., ‘Weak compactness in the dual of a C*algebra is determined commutatively’, Math. Ann. 298 (1994), 349371.CrossRefGoogle Scholar
[21]Rodríguez-Palacios, A., ‘Jordan structures in analysis’, in Proc. Conf. Jordan Algebras, Oberwolfach 1992 (de Gruyter, Berlin, 1994), pp. 97186.Google Scholar
[22]Wojtaszczyk, P., Banach spaces for analysts, Cambridge Studies in Advanced Mathematics 25 (Cambridge University Press, Cambridge, 1991).CrossRefGoogle Scholar
[23]Zhu, K., Operator theory in function spaces, Monographs and textbooks in Pure and Applied Mathematics 139 (Marcel Dekker, Inc., New York, 1990).Google Scholar