No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
If (Ω, Σ, μ) is a finite measure space and X is a normed space such that X* has the Radon-Nikodym property with respect to μ, we show first that each space Lp(μ, x), 1 < p < ∞, is ultrabornological whenever μ is atomless. When μ is arbitrary, we prove later on that the space Lp(μ, X) is ultrabornological if X* has the Radon-Nikodym property with respect to μ and X is itself an ultrabornological space.