No CrossRef data available.
Published online by Cambridge University Press: 18 June 2020
Consider an intermittent map $f_{\unicode[STIX]{x1D705}}:[0,1]\rightarrow [0,1]$ and a Hölder continuous potential $\unicode[STIX]{x1D711}:[0,1]\rightarrow \mathbb{R}$. We show that $\unicode[STIX]{x1D719}$ is stochastic for $f_{\unicode[STIX]{x1D705}}$ if and only if the topological pressure $P(f_{\unicode[STIX]{x1D705}},\unicode[STIX]{x1D711})$ satisfies $P(f_{\unicode[STIX]{x1D705}},\unicode[STIX]{x1D711})-\unicode[STIX]{x1D711}(0)>0$. As a consequence, for each $\unicode[STIX]{x1D6FD}>0$ sufficiently small, the set of Hölder continuous potentials of exponent $\unicode[STIX]{x1D6FD}$ that are not stochastic for $f_{\unicode[STIX]{x1D705}}$ has nonempty interior in the space of all such potentials.
The author was supported by the National Natural Science Foundation of China (Grant No. 11871194).