Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T06:15:49.275Z Has data issue: false hasContentIssue false

Properties of the trajectories of set-valued integrals in banach spaces

Published online by Cambridge University Press:  17 April 2009

Nikolaos S. Papageorgiou
Affiliation:
University of California1015 Department of MathematicsDavis, CA 95616United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let F: T → 2x \ {} be a closed-valued multifunction into a separable Banach space X. We define the sets and We prove various convergence theorems for those two sets using the Hausdorff metric and the Kuratowski-Mosco convergence of sets. Then we prove a density theorem of CF and a corresponding convexity theorem for F(·). Finally we study the “differentiability” properties of K(·). Our work extends and improves earlier ones by Artstein, Bridgland, Hermes and Papageorgiou.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Artstein, Z., ‘On the calculus of closed set-valued functions’, Indiana Univ. Math. J. 24 (1974), 433–411.CrossRefGoogle Scholar
[2]Aubin, J.-P. and Cellina, A., Differential inclusion (Springer-Verlag, Berlin, Heidelberg, New York, 1984).CrossRefGoogle Scholar
[3]Bridgland, T.F., ‘Trajectory integrals of set valued functions’, Pacific J. Math. 33 (1970), 4368.CrossRefGoogle Scholar
[4]Chuong, P.V., ‘Some results on density of extreme selections for measurable multifunctions’, Math. Nachr 126 (1986), 310326.Google Scholar
[5]Costé, A., ‘La proprieté de Radon-Nikodym en integration multivoque’, C.R. Acad. Sci. Paris 280 (1975), 15151518.Google Scholar
[6]DeBlasi, F., ‘On the differentiability of multifunctions’, Pacific J. Math. 66 (1976), 6781.CrossRefGoogle Scholar
[7]Hermes, H., ‘Calculus of set valued functions and control’, J. Math. Mech. 18 (1968), 4760.Google Scholar
[8]Hiai, F. and Umegaki, H., ‘Integrals, conditional expectations and martingales of multivalued functions’, J. Multivariate Anal. 7 (1977), 149182.CrossRefGoogle Scholar
[9]Klein, E. and Thompson, A., Theory of Correspondences (Wiley, New York, 1984).Google Scholar
[10]Papageorgiou, N.S., ‘Trajectories of set valued integrals’, Bull. Austral. Math. Soc. 31 (1985), 389412.CrossRefGoogle Scholar
[11]Papageorgiou, N.S., ‘On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectations’, J. Multivarate Anal. 17 (1985), 185206.CrossRefGoogle Scholar
[12]Papageorgiou, N.S., ‘Convergence theorems for Banach space valued integrable multifunctions’, Internat. J. Math. Math. Sci. 10 (1987), 433442.CrossRefGoogle Scholar
[13]Richter, H., ‘Verallgemeinerug eines in der Statistik benötigten satzes der masstheorie’, Math. Ann. 150 (1963), 8590.CrossRefGoogle Scholar
[14]Salinetti, G. and Wets, R., ‘On the convergence of sequences of convex sets in finite dimensions’, SIAM Rev 21 (1979), 1833.CrossRefGoogle Scholar
[15]Tsukada, M., ‘Convergence of best approximations in a sooth Banach space’, J. Approx. Theory 40 (1984), 301309.CrossRefGoogle Scholar
[16]Wagner, D., ‘Survey of measurable selections’, SIAM J. Control Optim. 15 (1977), 857903.CrossRefGoogle Scholar