Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:40:55.468Z Has data issue: false hasContentIssue false

One-sided estimates for quasimonotone increasing functions

Published online by Cambridge University Press:  17 April 2009

Gerd Herzog
Affiliation:
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany, e-mail: [email protected], [email protected]
Roland Lemmert
Affiliation:
Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany, e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let E be a Banach space ordered by a solid and normal cone K, and normed by the Minkowski functional of an order interval [–p, p], pK. We derive global one-sided estimates for quasimonotone increasing functions f : [0, T) × EE with respect to the norm, and the distance to the line generated by p, under conditions of f; in direction p.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Herzog, G., ‘One-sided estimates for linear quasimonotone increasing operators’, Numer. Funct. Anal. Optim. 19 (1998), 549555.CrossRefGoogle Scholar
[2]Herzog, G., ‘On ordinary differential equations with quasimonotone increasing right-hand side’, Arch. Math. 70 (1998), 142146.CrossRefGoogle Scholar
[3]Martin, R.H., Nonlinear operators and differential equations in Banach spaces (Robert E. Krieger Publ. Company, Malabar, 1987).Google Scholar
[4]Mazur, S., ‘Über konvexe Mengen in linearen normierten Räumen’, Studia Math. 4 (1933), 7084.CrossRefGoogle Scholar
[5]Rautmann, R., ‘On tests for stability’,in Direct and inverse boundary value problems (Pap. 12th Conf. Methods Techniques Math. Phys.,Oberwolfach/Ger.1989), Methoden Verfahren Math. Phys. 37 (Lang, Frankfurt am Main, 1991), pp. 201212.Google Scholar
[6]Stern, R.J. and Wolkowicz, H., ‘Exponential nonnegativity on the ice cream cone’, SIAM J. Matrix Anal. Appl. 12 (1991), 160165.CrossRefGoogle Scholar
[7]Uhl, R., ‘Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces’, Proc. Amer. Math. Soc. 126 (1998), 19992003.CrossRefGoogle Scholar
[8]Volkmann, P., ‘Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen.’, Math. Z. 127 (1972), 157164.CrossRefGoogle Scholar