Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T02:18:30.081Z Has data issue: false hasContentIssue false

ON THE $p$-LENGTH AND THE WIELANDT SERIES OF A FINITE $p$-SOLUBLE GROUP

Published online by Cambridge University Press:  09 December 2014

NING SU
Affiliation:
School of Mathematics, Sun Yat-sen University, Guangzhou 510275, PR China email [email protected]
YANMING WANG*
Affiliation:
Lingnan College and Mathematics Department, Sun Yat-sen University, Guangzhou 510275, PR China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Wielandt subgroup of a group $G$, denoted by ${\it\omega}(G)$, is the intersection of the normalisers of all subnormal subgroups of $G$. The terms of the Wielandt series of $G$ are defined, inductively, by putting ${\it\omega}_{0}(G)=1$ and ${\it\omega}_{i+1}(G)/{\it\omega}_{i}(G)={\it\omega}(G/{\it\omega}_{i}(G))$. In this paper, we investigate the relations between the$p$-length of a $p$-soluble finite group and the Wielandt series of its Sylow $p$-subgroups. Some recent results are improved.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Ballester-Bolinches, A. and Pedraza-Aguilera, M. C., ‘On minimal subgroups of finite groups’, Acta Math. Hungar. 73(4) (1996), 335342.CrossRefGoogle Scholar
Doerk, K. and Hawkes, T. O., Finite Soluble Groups, Vol. 4 (Walter de Gruyter, Berlin–New York, 1992).Google Scholar
González-Sánchez, J. and Weigel, T. S., ‘Finite p-central groups of height k’, Israel J. Math. 181 (2011), 125143.CrossRefGoogle Scholar
Gorenstein, D., Finite Groups (Chelsea, New York, 1980).Google Scholar
Hall, P. and Higman, G., ‘On the p-length of p-soluble groups and reduction theorems for Burnside’s problem’, Proc. Lond. Math. Soc. (3) 3(1) (1956), 142.CrossRefGoogle Scholar
Huppert, B., Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, 134 (Springer, Berlin, 1967).Google Scholar
Huppert, B. and Blackburn, N., Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 242 (Springer, Berlin, 1982).Google Scholar
Su, N. and Wang, Y., ‘On the p-length and the Wielandt length of a finite p-soluble group’, Bull. Aust. Math. Soc. 88 (2013), 453459.Google Scholar
Su, N. and Wang, Y., ‘On the intersection of the normalizers of the F-residuals of subgroups of a finite group’, Algebr. Represent. Theory 17(2) (2014), 507518.CrossRefGoogle Scholar
Wielandt, H., ‘Über den normalisator der subnormalen untergruppen’, Math. Z. 69(1) (1958), 463465.CrossRefGoogle Scholar