Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T10:49:07.530Z Has data issue: false hasContentIssue false

On the Nonlinear Dirichlet Problem with P(x)-Laplacian

Published online by Cambridge University Press:  17 April 2009

Marek Galewski
Affiliation:
Faculty of Mathematics, University of Lódź, Banacha 22, 90–238 Lódź, Poland e-mail: [email protected], [email protected]
Marek Płócienniczak
Affiliation:
Faculty of Mathematics, University of Lódź, Banacha 22, 90–238 Lódź, Poland e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a dual variational method which we develop, we show the existence and stability of solutions for a family of Dirichlet problems k = 0, 1,… in a bounded domain in ℝN and with the nonlinearity satisfying some general growth conditions. The assumptions put on v are satisfied by p(x)-Laplacian operators.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Adams, R.A., Sobolev spaces (Academic Press, New York, 1975).Google Scholar
[2]Alves, C.O. and Marco, A.S., ‘Existence of solutions for a class of problems in ℝN involving the p(x)-Laplacian’, in Contributions to nonlinear analysis, Nonlinear Differential Equations Appl. 66 (Birkhuser, Basel, 2006), pp. 1732.CrossRefGoogle Scholar
[3]Chabrowski, J. and Fu, Y., ‘Existence of solutions for p(x)-Lapacian problem on a bounded domain’, J. Math. Anal. Appl. 306 (2005), 604618.CrossRefGoogle Scholar
[4]Ekeland, I. and Temam, R., Convex analysis and variational problems (North-Holland, Amsterdam, 1976).Google Scholar
[5]Fan, X.L. and Han, X.Y., ‘Existence and multiplicity of solutions for p(x)-Laplacian equations in ℝN’, Nonlinear Anal. 59 (2004), 173188.Google Scholar
[6]Fan, X.L. and Zhao, D., ‘Sobolev embedding theorems for Spaces ’, J. Math. Anal. Appl. 262 (2001), 749760.CrossRefGoogle Scholar
[7]Fan, X.L. and Zhao, D., ‘Existence of solutions for p(x)-Lapacian Dirichlet problem’, Nonlinear Anal. 52 (2003), 18431852.CrossRefGoogle Scholar
[8]Fan, X.L. and Zhao, D., ‘On the Spaces and ’, J. Math. Anal. Appl. 263 (2001), 424446.CrossRefGoogle Scholar
[9]Gajewski, H., Groeger, K. and Zacharias, K., Nichtlineare Operatorgleichungen und operatordifferentialgleichungen (Akademie-Verlag, Berlin, 1974).Google Scholar
[10]Galewski, M., ‘Stability of solutions for an abstract Dirichlet problem’, Ann. Polon. Math. 83 (2004), 273280.CrossRefGoogle Scholar
[11]Galewski, M., ‘New variational method for p(x)-Laplacian equation’, Bull. Austral. Math. Soc. 72 (2005), 5365.CrossRefGoogle Scholar
[12]Idczak, D., ‘Stability in semilinear problems’, J. Differential Equations 162 (2000), 6490.CrossRefGoogle Scholar
[13]Ruzicka, M., ‘Electrorheological fluids: modelling and mathematical theory’, in Lecture Notes in Mathematics 1748 (Springer-Verlag, Berlin, 2000).Google Scholar
[14]Walczak, S., ‘On the continuous dependance on parameters of solutions of the Dirichlet problem. Part I. Coercive Case, Part II. The Case of Saddle Points’, Acad. Roy. Belg. Bull. Cl. Sci. (6) 6 (1995), 247273.Google Scholar
[15]Walczak, S., ‘Continuous dependance on parameters and boundary data for nonlinear P.D.E. coercive case’, Differential Integral Equations 11 (1998), 3546.CrossRefGoogle Scholar
[16]Zhang, Q.H., ‘Singularity of positive radial solutions for a class of p(x)-Laplacian equations’, J. Lanzhou Univ. Nat. Sci. 36 (2000), 511.Google Scholar
[17]Zhang, Q.H., ‘Existence of radial solutions for p(x)-Laplacian equations in ℝN’, J. Math. Anal. Appl. 315 (2006), 506516.CrossRefGoogle Scholar
[18]Zhikov, V.V., ‘Averaging of functionals of the calculus of variations and elasticity theory’, Math. USSR Izv. 29 (1987), 3366.CrossRefGoogle Scholar