Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-04T19:23:42.520Z Has data issue: false hasContentIssue false

On the implicit complementarity problem in Hilbert spaces

Published online by Cambridge University Press:  17 April 2009

G. Isac
Affiliation:
Department de Mathẻmatiques, Collẻge Militaire Royal, St. Jean, Quebec, Canada JOJ IRO
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider in this paper the implicit complementarity problem imposed by quasi-variational inequalities and stochastic optimal control. The principal result is an existence theorem for the implicit complementarity problem in Hilbert spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Allen, C., “Variational inequalities, complementarity problems and duality theorems”, J. Math. Anal. and Appl. 58, (1977), 110.CrossRefGoogle Scholar
[2]Bazaraa, M.S., Goode, J.J. and Nashed, M.Z., “A nonlinear complementarity problem in mathematical programming in Banach space”, Proc. Amer. Math. Soc. Vol. 35, no 1, (1972), 165170.CrossRefGoogle Scholar
[3]Bensoussan, A., Gourset, M. and Lions, J. L., “Contrôle impulsionnel et inéquations quasi-variationnelles stationaires”. C. R.Acad. Sciences Paris, 276, (1973), A. 12791284.Google Scholar
[4]Bensoussan, A. and Lions, J.L., “Nouvelle formulation des problémes de contrôle impulsionnel et applications”, Acad. Sciences Paris. 276, (1973), 11891192.Google Scholar
[5]Bensoussan, A. and Lions, J.L., “Problemes de temps d'arrêt optimal et inéquations variationnelles paraboliques”. Applicable Analysis, (1973), 267294.CrossRefGoogle Scholar
[6]Bensoussan, A. and Lions, J.L., “Nouvelles methodes en controle impulsionnel”. Applied Math. and Optimization, no 1, (1974), 289312.Google Scholar
[7]Bensoussan, A., “Variational inequalities and optimal stopping time problems”. In: Russel, D.L. ed: “Calculus of variations and control theory”, Academic Press, (1976), 219244.Google Scholar
[8]Berger, M.S. and Schechter, M., “On the solvability of semilinear gradient operator equations”. Advances in Math. Vol. 25, (1977), 97132.CrossRefGoogle Scholar
[9]Borwein, J.M., “Generalized linear complementarity problems treated without fixed-point theory”. J. Opt. Theory and Appl. Vol. 43 no 3, (1984), 343356.CrossRefGoogle Scholar
[10]Browder, F.E., “Nonlinear accretive operators”, Bull. Amer. Math. Soc. 73, (1967), 470476.CrossRefGoogle Scholar
[11]Browder, F.E., “Nonlinear mappings of nonexpansive and accretive type in Banach spaces”, Bull. Amer. Math. Soc. 73, (1967), 875882.CrossRefGoogle Scholar
[12]Browder, F.E., “Nonlinear monotone and accretive operators in Banach spaces”, Proc. Nat. Acad. Sci. U.S.A. 61, (1968), 388393.CrossRefGoogle ScholarPubMed
[13]Chan, D. and Pang, J.S., “The generalized quasivariational inequality problem”, Math. of Operations Research, Vol. 7, no 2, (1982), 211222.CrossRefGoogle Scholar
[14]Crandal, M.G. and Pazy, A., “On the range of accretive operators”. Israel J. of Math. Vol. 27, no 3–4, (1977) 235246.CrossRefGoogle Scholar
[15]Dash, A.T. and Nanda, S., “A complementarity problem in mathematical programming in Banach Space”, J. Math. Anal. and Appl. 98, (1984), 328331.CrossRefGoogle Scholar
[16]Dolcetta, I.C. and Mosco, V., “Implicit complementarity problems and quasi-variational inequalities”, In. Cottle, R.W., Giannessi, F. and Lions, J.L. eds: “Variational inequalities and complementarity problems”, Theory and Appl. John Wiley & Sons, (1980), 7587.Google Scholar
[17]Fujimoto, T., “Nonlinear complementarity problems in a function space”, Siam J. Control and Optimization Vol. 18, (1980), 621623.CrossRefGoogle Scholar
[18]Fujimoto, T., “An extension of Tarski's fixed point theorem and its applications to isotone complementarity problems”, Math. Programming 28, (1984), 116118.CrossRefGoogle Scholar
[19]Isac, G., “Nonlinear complementarity problem and Galerkin method”, J. Math. Anal. and Appl. 108 (1985), 563574.CrossRefGoogle Scholar
[20]Isac, G., “Complementarity problem via nonlinear eigenvalues problems and coincidence equations on cones”, Publ. Math. Universite Limoges, (1984).Google Scholar
[21]Isac, G., “Complementarity problem and coincidence equations on convex cones”, Preprint (1984).Google Scholar
[22]Karamardian, S., “Generalized complementarity problem”, J. Optimiz. Theory and Appl. 8, (1971), 161168.CrossRefGoogle Scholar
[23]Kato, P., “Nonlinear semigroups and evolution equations”, J. Math. Soc. Japan, (1967), 508520.Google Scholar
[24]Kirk, W.A. and Schneberg, R., “Some results an pseudo-contractive mappings”, Pacific J. of Math. Vol. 71, no 1, (1977), 89100.CrossRefGoogle Scholar
[25]Luna, G., “A remark on the complementarity problem”, Proc.Amer. Math. Soc. 48, no 1, (1975), 132134.CrossRefGoogle Scholar
[26]Minty, G. H., “Monotone (nonlinear) operators in a Hilbert space”, Duke Math. J. 29, (1962), 341346,CrossRefGoogle Scholar
[27]Mosco, V., “On some non-linear quasi-variational inequalities and implicit complementarity problems in stochastic control theory” In Cottle, R.W., Giannessi, F. and Lions, J.L. eds, “Variational inequalities and coinplementarity problems theory and Applications”, John Wiley & Sons, (1980), 271283.Google Scholar
[28]Nanda, S. and Nanda, S., “A nonlinear complementarity problem in mathematical programming in Hilbert space”, Bull. Aust. Math. Soc. 20, (1979), 233236.CrossRefGoogle Scholar
[29]Pang, J.S., “The implicit complementarity problem”, In: Mangasarian, O.L., Meyer, R.R. and Robinson, S.M. eds., “Nonlinear Programming 4”, Academic Press, (1981) 487518.Google Scholar
[30]Pang, J.S., “On the convergence of a basic iterative method for the implicit complementarity problem”, J. Optimiz. Theory and Appl. 37, (1982).CrossRefGoogle Scholar
[31]Riddell, R.C., “Equivalence of nonlinear complementarity problems and least element problems in Banach lattices”, Math. of Operations Research. Vol. 6, no 3, (1981), 462474.CrossRefGoogle Scholar
[32]Schneberg, R., “On the domain invariance theorem for accretive mappings”, J. London Math. Soc. (2) 24, (1981), 548554.CrossRefGoogle Scholar
[33]Webb, G.F., “Nonlinear perturbation of linear operators in Banach spaces”, J. Funct. Anal. 10, (1972), 191203.CrossRefGoogle Scholar