Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:37:12.592Z Has data issue: false hasContentIssue false

On slant curves in Sasakian 3-manifolds

Published online by Cambridge University Press:  17 April 2009

Jong Taek Cho
Affiliation:
Department of Mathematics, Chonnam National University, CNU The Institute of Basic Science, Kwangju, 500–757, Korea, e-mail: [email protected]
Jun-Ichi Inoguchi
Affiliation:
Department of Mathematics, Graduate School, Chonnam National University, Kwangju, 500–757, Korea
Ji-eun Lee
Affiliation:
Department of Mathematics Education, Utsunomiya University, Utsunomiya 321–8505, Japan, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical theorem by Lancret says that a curve in Euclidean 3-space is of constant slope if and only if its ratio of curvature and torsion is constant. In this paper we study Lancret type problems for curves in Sasakian 3-manifolds.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Barros, M., ‘General helices and a theorem of Lancret’, Proc. Amer. Math. Soc. 125 (1997), 15031509.CrossRefGoogle Scholar
[2]Baikoussis, C. and Blair, D.E., ‘On Legendre curves in contact 3-manifolds’, Geom. Dedi-cata 49 (1994), 135142.CrossRefGoogle Scholar
[3]Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203 (Birkhäuser, Boston, Basel, Berlin, 2002).CrossRefGoogle Scholar
[4]Blair, D.E. and Vanhecke, L., ‘Symmetries and ϕ-symmetric spaces’, Tôhoku Math. J. 39 (1997), 373383.Google Scholar
[5]Caddeo, R., Montaldo, S. and Oniciuc, C., ‘Biharmonic submanifolds of S3,’, Internat. J. Math. 12 (2001), 867876.CrossRefGoogle Scholar
[6]Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P., ‘The classification of biharmonic curves of Cartan-Vranceanu 3-dimesnional spaces’, (preprint, math.DG/0510435), in Proceedings of The Seventh International Workshop on Differential Geometry and its Applications, Deva, Romania, September 2005 (to appear).Google Scholar
[7]Caddeo, R., Oniciuc, C. and Piu, P., ‘Explicit formulas for biharmonic non-geodesic curves of the Heisenberg group’, Rend. Sem. Mat. Univ. Politec. Torino 62 (2004), 265277.Google Scholar
[8]Chen, B.Y. and Ishikawa, S., ‘Biharmonic surfaces in pseudo-Euclidean spaces’, Mem. Fac. Sci. Kyushu Univ. Ser A 45 (1991), 323347.Google Scholar
[9]Cho, J.T., Inoguchi, J. and Lee, J.-E., ‘Biharmonic curves in Sasakian space forms’, Ann. Mat. Pura Appl. (to appear).Google Scholar
[10]Eisenhart, L.P., A treatise on the differential geometry of curves and surfaces (Ginn and Company, Boston, 1909)). (Reprinted as a Dover Phoenix Editions (2004)).Google Scholar
[11]Ferrández, A., ‘Riemannian versus Lorentzian submanifolds, some open problems’, in Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostera 89 (Depto. Geom. y Topología, Univ. Santiago de Compostera, 1998), pp. 109130.Google Scholar
[12]Ferrández, A., Giménez, A. and Lucas, P., ‘Null helices in Lorentzian space forms’, Internat J. Modern Phys. A 16 (2001), 48454863.CrossRefGoogle Scholar
[13]Ferrández, A., Giménez, A. and Lucas, P., ‘Null generalized helices in Lorentz-Minkowski spaces’, J. Phys. A. 35 (2002), 82438251.CrossRefGoogle Scholar
[14]Honda, K. and Inoguchi, J., ‘Cesàro's method for Cartan framed null curves’, (preprint, 2003).Google Scholar
[15]Inoguchi, J., ‘Biharmonic curves in Minkowski 3-space’, Int. J. Math. Math. Sci. 21 (2003), 13651368.CrossRefGoogle Scholar
[16]Inoguchi, J., ‘Biharmonic curves in Minkowski 3-space. Part II’, Int. J. Math. Math. Sci. (to appear).Google Scholar
[17]Inoguchi, J., Kuwabara, K. and Naitoh, H., ‘Grassmann geometry on the 3-dimensional Heisenberg group’, Hokkaido Math. J. 34 (2005), 375391.CrossRefGoogle Scholar
[18]Inoguchi, J. and Lee, S., ‘Null curves in Minkowski 3-space’, (preprint).Google Scholar
[19]Lancret, M.A., ‘Mémoire sur les courbes à double courbure’, Mémoires présentés à l'Institut 1 (1806), 416454.Google Scholar
[20]O'Neill, B., Elementary differential geometry (Academic Press, New York, London, 1966).Google Scholar
[21]Struik, D.J., Lectures on classical differential geometry (Addison-Wesley Press Inc., Cambridge, MA, 1950). Reprint of the second edition (Dover, New York, 1988).Google Scholar
[22]Tanno, S., ‘Sur une variété de K-contact métrique de dimension 3’, C. R. Acad. Sci. Paris Ser. A-B 263 (1966), A317A319.Google Scholar