Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T21:23:32.848Z Has data issue: false hasContentIssue false

On loops which have dihedral 2-groups as inner mapping groups

Published online by Cambridge University Press:  17 April 2009

Markku Niemenmaa
Affiliation:
Department of MathematicsUniversity of OuluSF-90570 OuluFinland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the situation that a group G has a subgroup H which is a dihedral 2-group and with connected transversals A and B in G. We show that G is then solvable and moreover, if G is generated by the set AB, then H is subnormal in G. We apply these results to loop theory and it follows that if the inner mapping group of a loop Q is a dihedral 2-group then Q is centrally nilpotent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Albert, A.A., ‘Quasigroups I’, Trans. Amer. Math. Soc. 54 (1943), 507519.CrossRefGoogle Scholar
[2]Albert, A.A., ‘Quasigroups II’, Trans. Amer. Math. Soc. 55 (1944), 401419.CrossRefGoogle Scholar
[3]Bruck, R.H., ‘Contributions to the theory of loops’, Trans. Amer. Math. Soc. 60 (1946), 245354.CrossRefGoogle Scholar
[4]Bruck, R.H., A survey of binary systems (Springer Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[5]Guy, J.P., ‘Sur des groupes isomorphes au groupe de multiplication d'une boucle’, Comm. Algebra 18 (1990), 33953403.Google Scholar
[6]Huppert, B., Endliche Gruppen I (Springer Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[7]Kepka, T. and Niemenmaa, M., ‘On loops with cyclic inner mapping groups’, Arch. Math. 60 (1993), 233236.CrossRefGoogle Scholar
[8]Liebeck, M.W., ‘The classification of finite simple Moufang loops.’, Math. Proc. Cambridge Philos. Soc. 102 (1987), 3347.CrossRefGoogle Scholar
[9]Niemenmaa, M., ‘Problems in loop theory for group theorists’, Groups St. Andrews 1989 Vol. 2, London Mathematical Society Lecture Notes Series 60 (1991), 396399.Google Scholar
[10]Niemenmaa, M., ‘Transversals, commutators and solvability in finite groups’, Boll. Un. Mat. Ital. (to appear).Google Scholar
[11]Niemenmaa, M. and Kepka, T., ‘On multiplication groups of loops’, J. Algebra 135 (1990), 112122.CrossRefGoogle Scholar
[12]Niemenmaa, M. and Kepka, T., ‘On connected transversals to Abelian subgroups in finite groups’, Bull. London Math. Soc. 24 (1992), 343346.CrossRefGoogle Scholar
[13]Niemenmaa, M. and Kepka, T., ‘On connected transversals to Abelian subgroups’, Bull. Austral. Math. Soc. 49 (1994), 121128.CrossRefGoogle Scholar
[14]Niemenmaa, M. and Rosenberger, G., ‘On connected transversals in infinite groups’, Math. Scand. 70 (1992), 172176.CrossRefGoogle Scholar
[15]Thompson, J.G., ‘A special class of solvable groups’, Math. Z. 72 (1960), 458462.CrossRefGoogle Scholar
[16]Vesanen, A., ‘On p-groups as loop groups’, Arch. Math. 61 (1993), 16.CrossRefGoogle Scholar