Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:08:27.308Z Has data issue: false hasContentIssue false

On group uniformities on square of a space and extending pseudometrics II

Published online by Cambridge University Press:  17 April 2009

Michael G. Tkačenko
Affiliation:
Departamento de MatemáticasUniversidad Autónoma MetropolitanaAv. Michoacan y La PurísimaIztapalapa, A.P. 55–532, C.P. 09340México, D.F. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We find topological conditions on a space X under which the left (right, or two-sided) uniformity of the free topological group F(X) induces the universal uniformity or the product uniformity ux × ux on the square of X. Special attention is given to kω metrisable spaces. The main technical tool in the paper is an extension of certain continuous pseudometrics from X2 to F(X) considered by the author in the previous volume of this journal.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Comfort, W.W. and Hager, A.W., ‘The projection mapping and other continuous functions on a product space’, Math. Scand. 28 (1971), 7790.Google Scholar
[2]Engelking, R., General topology (PWN, Warsaw, 1977).Google Scholar
[3]Franklin, S.P. and Thomas, B.V.S., ‘A survey of k ω-spaces’, Topology Proc. 2 (1977), 111124.Google Scholar
[4]Glicksberg, I., ‘Stone-Čech compactifications of products’, Trans. Amer. Math. Soc. 90 (1959), 369382.Google Scholar
[5]Graev, M.I., ‘Free topological groups’, (in Russian), Izv. Akad. Nauk SSSR 12 (1948), 279324 (English translation: Translat. Amer. Math. Soc. 8 (1962), 305–364.).Google Scholar
[6]Isbell, J.R., Uniform spaces, Mathematical Surveys 12 (American Mathematical Society, Providence, 1964).Google Scholar
[7]Katz, E., ‘Free products in the category of k ω-groups’, Pacific J. Math. 59 (1975), 493495.CrossRefGoogle Scholar
[8]Nummela, E.C., ‘Uniform free topological groups and Samuel compactifications’, Topology Appl. 13 (1982), 7783.CrossRefGoogle Scholar
[9]Pestov, V.G., ‘Some properties of free topological groups’, (in Russian), Vestnik Moskov. Univ. Ser.I Matem. Mekh. (1982), 3537 (English translation: Moscow Univ. Math. Bull. 37, 46–49).Google Scholar
[10]Roelcke, W. and Dierolf, S., Uniform structures on topological groups and their quotients (New York, 1981).Google Scholar
[11]Ščepin, E.V., ‘Real-valued functions and canonical sets in Tikhonov products and topological groups’, (in Russian), Uspekhi Mat. Nauk 31 (1976), 1727 (English translation: Russian Math. Surveys 31 (1976)).Google Scholar
[12]Sipacheva, O.V. and Uspenskiĭ, V.V., ‘Free topological groups with no small subgroups and Graev metrics’, (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1987), 2124, (English translation: Moscow Univ. Math. Bull. 42, 24–29).Google Scholar
[13]Tkačenko, M.G., ‘Some results on inverse spectra I’, Comment. Math. Univ. Carolin. 22 (1981), 621633.Google Scholar
[14]Tkačenko, M.G., ‘The Souslin property in free topological groups on bicompacta’, (in Russian), Mat. Zametki 34 (1983), 601607, (English translation: Mathematical Notes 34, 790–793).Google Scholar
[15]Tkačenko, M.G., ‘On some properties of free topological groups’, (in Russian), Mat. Zametki 37 (1985), 110118, (English translation: Mathematical Notes 37 (1985), 62–66).Google Scholar
[16]Tkačenko, M.G., ‘Boundedness and pseudocompactness in topological groups’, (in Russian), Matem. Zametky 41 (1987), 400405, (English translation: Mathematical Notes 41, 229–231).Google Scholar
[17]Tkačenko, M.G., ‘On group uniformities on square of a space and extending pseudometrics’, Bull. Austral. Math. Soc. 51 (1995), 309335.CrossRefGoogle Scholar
[18]Uspenskiĭ, V.V., ‘Free topological groups on mertizable spaces’, (in Russian), Izv. Acad. Nauk SSSR 54 (1990), 12951319.Google Scholar