No CrossRef data available.
Published online by Cambridge University Press: 27 May 2019
We study the singularity at the origin of $\mathbb{C}^{n+1}$ of an arbitrary homogeneous polynomial in $n+1$ variables with complex coefficients, by investigating the monodromy characteristic polynomials $\unicode[STIX]{x1D6E5}_{l}(t)$ as well as the relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case $n=2$, we give a description of $\unicode[STIX]{x1D6E5}_{C}(t)=\unicode[STIX]{x1D6E5}_{1}(t)$ in terms of the multiplier ideal.
The first author’s research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number FWO.101.2015.02; the third author’s research is funded by the Vietnam National University, Hanoi (VNU), under project number QG.15.02.