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QUY THUONG LÊ�, LAN PHU HOANG NGUYEN and DUC TAI PHO

(Received 17 February 2019; accepted 31 March 2019; first published online 27 May 2019)

Abstract

We study the singularity at the origin of Cn+1 of an arbitrary homogeneous polynomial in n + 1 variables
with complex coefficients, by investigating the monodromy characteristic polynomials ∆l(t) as well as the
relation between the monodromy zeta function and the Hodge spectrum of the singularity. In the case
n = 2, we give a description of ∆C(t) = ∆1(t) in terms of the multiplier ideal.
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1. Introduction

In this paper we extend the work of the first author in [16].
Let f be a homogeneous polynomial (not necessarily reduced) of degree d in n + 1

variables with coefficients in C, which defines a holomorphic function germ at the
origin O of Cn+1. In general, according to [20] and [15], the Milnor fibre of the
hypersurface germ ( f = 0,O) is up to diffeomorphism a manifold M = f −1(δ) ∩ Bε, for
Bε ⊆ Cn+1 the ball of radius ε around O and 0 < δ� ε� 1. Since f is a homogeneous
polynomial, f −1(δ) ∩ Bε is a deformation retract of f −1(δ) � f −1(1), and we may
consider M as f −1(1). The monodromy

T ∗ : H∗(M,C)→ H∗(M,C)

of the singularity is given explicitly by the C-linear endomorphism induced by the map

T : M → M, (x0, . . . , xn) 7→ (e2πi/d x0, . . . , e2πi/d xn).

When f is an isolated homogeneous singularity, several invariants such as the Milnor
number, the characteristic polynomials of T ∗, the signature and Hodge numbers of M
can be computed by classical topological and algebraic methods as well as via mixed
Hodge structures (see [21, 25]).
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For reduced homogeneous polynomials, Esnault [11] introduced a method to
compute the Betti numbers, the rank and the signature of the intersection matrices
of the singularity ( f ,O), using mixed Hodge structures on cohomology groups of the
Milnor fibre M and the existence of spectral sequences converging to the cohomology
groups, together with resolution of singularities. The work by Esnault inspired the
study by Loeser and Vaquié [19] of the Alexander polynomial of a reduced complex
projective plane curve, where they provided a formula for the Alexander polynomial
which generalises the previous one by Libgober [17, 18]. The work of Libgober in [18]
and Loeser and Vaquié in [19], as well as that of Nadel in [22], probably sparked the
studies on multiplier ideals and local systems which were pursued by Esnault and
Viehweg [12], Ein and Lazarsfeld [10], Demailly [7], Kollar [13], Budur [2, 4] and
Budur and Saito [6].

Using the theory of (mixed) multiplier ideals and local systems, Budur [3] gave an
explicit description of the local system of the complement in Pn of the divisor defined
by a homogeneous polynomial f not necessarily reduced. We use Budur’s article [3]
to study the characteristic polynomials, the Hodge spectrum and the monodromy zeta
function of an arbitrary homogeneous hypersurface singularity.

Denote by D the closed subscheme of Pn defined by the zero locus of a
homogeneous polynomial f of degree d and by U the complement of D in Pn. The
homogeneity of f gives rise to a natural action of Z/dZ on M. Since this action
is free we have a natural isomorphism M/(Z/dZ) � U, from which the quotient
map σ : M → U is a cyclic cover of degree d. The automorphism T : M → M
induces an obvious automorphism σ∗CM → σ∗CM of the OU-module sheaf σ∗CM
on U. From [3, 4], there is an eigensheaf decomposition of σ∗CM into the unitary
local systems Vk on U, with respect to the eigenvalues e−2πik/d for 0 ≤ k ≤ d − 1.
In the cohomology level, from the Leray spectral sequence, Hl(U,Vk) is the
eigenspace of the monodromy T ∗|Hl(M,C) with respect to the eigenvalue e−2πik/d, for
any l in N (see [3]). Assume that D has r distinct irreducible components Di
and that, for each i, mi is the multiplicity of Di in D. By [3, Lemma 4.2], for
each k, modulo the identification RH in [4, Theorem 1.2], Vk is just the element(
OPn (

∑r
j=1{km j/d}d j), ({km1/d}, . . . , {kmr/d})

)
in the group Picτ(Pn,D) of realisations

of boundaries of Pn on D (see [4, Definition 1.1]). Here {α} denotes the fractional part
of a rational number α.

The computation of the complex dimension of Hl(U,Vk) can be solved completely
using the work of Budur [2–5] in terms of resolution of singularities. Let π : Y → Pn

be a log-resolution of D, with normal crossing divisor E. We write

L(k) := π∗OPn

( r∑
j=1

{km j

d

}
d j

)
⊗ OY

(
−

⌊ r∑
j=1

{km j

d

}
π∗D j

⌋)
,

an invertible sheaf on Y . As proved in Lemma 3.9, for l ≥ 0 and 1 ≤ k ≤ d,

dimC Hl(U,Vd−k) =
∑
p≥0

dimC Hl−p(Y,Ωp
Y (log E) ⊗ L(k)−1

),

from which the characteristic polynomial ∆l(t) of T ∗|Hl(M,C) follows.
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In particular, for n = 2 and l = 1, we give a description of ∆C(t) = ∆1(t) via the
multiplier ideal of

∑r
j=1{km j/d}C j, where we write C j instead of D j when D is a

curve C. Let m be the greatest common divisor of m1, . . . ,mr. By Remark 3.6, the
set {[k] ∈ Z/dZ | d divides km j for every j} is a subgroup of Z/dZ, whose quotient is
denoted by G. Identifying k ∈ [0, d − 1] ∩ Z with its class in G gives the next result.

Theorem 1.1 (Theorem 4.3). With the notation introduced above,

∆C(t) = (tm − 1)r−1
∏

k∈G\{0}

(
t2m − 2tm cos

2kmπ
d

+ 1
)`k

,

where

`k := dimC H1
(
P2,J

(
P2,

r∑
j=1

{km j

d

}
C j

)( r∑
j=1

{km j

d

}
d j − 3

))
.

Further, Theorem 4.4 discusses the relation between the Hodge spectrum and the
monodromy zeta function of a homogeneous singularity.

Theorem 1.2 (Theorem 4.4). The monodromy zeta function and the Hodge spectrum
of ( f ,O) are related as follows:

ζ f ,O(t)(−1)n+1
= (1 − tm)1+

∑n
p=1 np,O( f )

∏
k∈G\{0}

(1 − e2πikm/dtm)
∑n

p=0 n(d−k)/d+p,O( f ),

where nα,O( f ) are the spectrum multiplicities of f at O (see (2.1)).

This result can also be deduced from [3, Proposition 4.3] and Proposition 3.7.

2. Multiplier ideals and the Hodge spectrum

2.1. Multiplier ideals. Suppose that X is a smooth complex algebraic variety and
D =

∑r
i=1 Di a closed subscheme of X, with Di irreducible (not necessarily distinct).

Let a be the sheaf of ideals of definition of D. For any α = (α1, . . . , αr) in Qr
>0, write

αD for the effective Q-divisor
∑r

i=1 αiDi. Let π : Y → X be a log-resolution of a (also
called a log-resolution of D). Note that π is also a common log-resolution of all the
ideals of definition of Di for 1 ≤ i ≤ r. Let KX , KY denote the canonical divisors of
X, Y , respectively. Then the divisor KY/X := KY − π

∗KX is called the canonical divisor
of π. For α in Qr

>0 put

J(X, αD) := π∗OY (KY/X − bπ
∗(αD)c),

where bπ∗(αD)c is the divisor whose coefficients are the round-downs of the
corresponding coefficients of π∗(αD).

Theorem 2.1 (Lazarsfeld [14]). For any α ∈ Qr
>0, the sheaf of ideals J(X, αD) is

independent of the choice of π, and Riπ∗OY (KY/X − bπ
∗(αD)c) = 0 for i ≥ 1. The sheaf

of ideals J(X, αD) is called the (mixed) multiplier ideal of αD.
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A jumping number of D in X is a rational number α ∈ Q>0 such that J(X, αD) ,
J(X, (α − ε)D) for every rational number ε > 0. The log canonical threshold lct(X,D)
of (X,D) is the smallest jumping number of D in X. In [14], Lazarsfeld gives a formula
for lct(X,D) in terms of the discrepancies and multiplicities of a log-resolution of D.
To determine how a singular point affects a jumping number, Budur [2] introduces
inner jumping multiplicities. By definition, the inner jumping multiplicity mα,p(D) of
α at a closed point p ∈ D is the dimension of the complex vector space

Kp(X, αD) := J(X, (α − ε)D)/J(X,Dα,ε,δ),

for 0 < ε� δ� 1, where Dα,ε,δ is the divisor whose sheaf of ideals of definition is
aα−ε ·mδp and mp is the ideal sheaf of p in X. If mα,p(D) , 0, the number α is called an
inner jumping number of (X,D) at p. It is proved by Budur in [2, Proposition 2.8]
that if α is an inner jumping number of (X, D) at p, for some p ∈ D, then α is a
jumping number of (X,D). Budur gives an explicit formula for the number mα,p(D).
Let π : Y → X be a log-resolution of D, with E = π∗(D) =

∑
i∈A NiEi, Ei irreducible

components, and, for each d ∈ N>0, let Jd,p := {i ∈ A | Ni , 0, d|Ni, π(Ei) = p} and
Ed,p :=

⋃
i∈Jd,p Ei.

Proposition 2.2 (Budur [2]). Assume α = k/d, with k, d coprime positive integers, and
0 < ε� 1. Then mα,p(D) = χ(Y,OEd,p (KY/X − b(1 − ε)απ∗Dc)), where χ is the sheaf
Euler characteristic.

2.2. Hodge spectrum. Let X be a smooth complex variety of pure dimension n, let
f be a regular function on X with zero locus D , ∅, and let p be a closed point in Dred.
Fixing a smooth metric on X, we may define a closed ball B(p, ε) around p in X and a
punctured closed disc D∗δ around the origin of C. It is well known (see [20]) that, for
0 < δ� ε� 1, the map

f : B(p, ε) ∩ f −1(D∗δ)→ D∗δ
is a smooth locally trivial fibration, called the Milnor fibration, whose diffeomorphism
type is independent of ε and δ. Denote the Milnor fibre B(p, ε) ∩ f −1(δ) by Mp,
the geometric monodromy by T : Mp → Mp and the induced map on cohomology by
T ∗ : H∗(Mp,C)→ H∗(Mp,C).

Let MHSmon
C be the abelian category of complex mixed Hodge structures endowed

with an automorphism of finite order. For an object (H, TH) of MHSmon
C , define its

Hodge spectrum as
Hsp(H,TH) :=

∑
α∈Q

nαtα,

where nα := dimC GrbαcF He2πiα , He2πiα is the eigenspace of TH with respect to the
eigenvalue e2πiα and F is the Hodge filtration. By [24] and [23], for any l, Hl(Mp,C)
carries a canonical mixed Hodge structure, which is compatible with the semisimple
part T ∗s of T ∗ so that (Hl(Mp,C), T ∗s ) is an object of MHSmon

C . As in [8, Section 4.3]
and [2, Section 3], we set

Hsp′( f ,p) :=
∑
j∈Z

(−1) jHsp(H̃n−1+ j(Mp,C),T ∗s ),
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where we use the reduced cohomology H̃ to present the vanishing cycle sheaf
cohomology, since H̃l(Mp,C)e2πiα = Hl(Mp,C)e2πiα if l , 0 or α < Z, and H̃0(Mp,C)1 =

coker(H0(∗,C)→ H0(Mp,C)1) (see also [6, Section 5.1]). Then the Hodge spectrum
of f at p, denoted by Sp( f ,p), is

Sp( f ,p) = tnι(Hsp′( f ,p)),

where ι is given by ι(tα) = t−α. Writing Sp( f , p) =
∑
α∈Q nα,p( f )tα, one calls the

coefficients nα,p( f ) the spectrum multiplicities of f at p. By [6, Proposition 5.2],
nα,p( f ) = 0 if α is a rational number with α ≤ 0 or α ≥ n. From [3, Corollary 2.3],
for α ∈ (0, n) ∩ Q,

nα,p( f ) =
∑
j∈Z

(−1) j dimCGrbn−αcF Hn−1+ j(Mp,C)e−2πiα . (2.1)

Using [8, Corollary 4.3.1] and important computations on multiplier ideals, Budur
found the following effective way to compute nα,p( f ), for α ∈ (0, 1] ∩ Q.

Theorem 2.3 (Budur [2]). Let X be a smooth quasi-projective complex variety and D
an effective divisor on X. Assume that p is a closed point of Dred and f is any local
equation of D at p. Then nα,p( f ) = mα,p(D) for any α ∈ (0, 1] ∩ Q.

3. Local systems and Milnor fibres of homogeneous singularities

3.1. Local systems and normal G-covers. A C-local system V on a complex
manifold is a locally constant sheaf of finite-dimensional C-vector spaces. As
mentioned in Budur [4], rank-one local systems on a complex manifold U correspond
to group morphisms H1(U)→ C∗. In this correspondence, a rank-one local system is
called unitary if it is sent to a morphism of groups H1(U)→ S 1. The constant sheaf
CU and any local system of rank one of finite order are simple examples of unitary
local systems.

Let X be a smooth complex projective variety of dimension n and f a regular
function on X whose zero divisor D := f −1(0) has distinct irreducible components
D1, . . . , Dr. Denote U := X \ D and write c1(L) for the first Chern class of a line
bundle L. We consider the group

Picτ(X,D) :=
{
(L, α) ∈ Pic(X) × [0, 1)r | c1(L) =

r∑
j=1

α j〈D j〉 ∈ H2(X,R)
}

in which the operation is given by

(L, α) · (L′, α′) := (L ⊗ L′ ⊗ OX(−b(α + α′)Dc), {α + α′}), (3.1)

where 〈D j〉 is the cohomology class of D j in H2(X,R), bαc := (bα1c, . . . , bαrc) and
{α} := α − bαc. By [4, Theorem 1.2], there is a canonical isomorphism of groups

RH : Picτ(X,D) � Hom(H1(U), S 1). (3.2)

Hence one may identify a unitary local system of rank one on U with an element of
Picτ(X,D). Let π : Y → X be a log-resolution of D and E := Y \ π−1(U).
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Proposition 3.1 (Budur [4, Proposition 3.3]). The map π∗par : Picτ(X,D)→ Picτ(Y, E)
which sends (L, α) to (π∗L ⊗ OY (−bβEc), {β}) with β defined by π∗(αD) = βE is an
isomorphism of groups.

Theorem 3.2 (Budur [5, Theorem 4.6]). Let V be a rank-one unitary local system on
U which corresponds to (L, α) ∈ Picτ(X,D). Then, for all p, q ∈ N,

Grp
F Hp+q(U,V∨) = Hn−q(Y,Ωp

Y (log E)∨ ⊗ ωY ⊗ π
∗L ⊗ OY (−bπ∗(αD)c))∨.

In particular, Gr0
F Hq(U,V∨) = Hn−q(X, ωX ⊗ L ⊗ J(X, αD))∨.

Let G be a finite abelian group such that its dual group G∗ = Hom(G,C∗) can be
embedded into Picτ(X,D). Then, by identifying G∗ with a subgroup {(Lη, αη) | η ∈ G∗}
of Picτ(X,D), we get the following normal G-cover of X unramified above U,

φ : X̃ = SpecOX

(⊕
η∈G∗

L−1
η

)
→ X,

which is a morphism of varieties induced by the OX-module structural morphisms
OX → Lη, for all η ∈ G∗. The group G acts on L−1

η via the character η, hence it acts
on the OX-module sheaf φ∗OX̃ . By [4, Corollary 1.11], φ∗OX̃ admits an eigensheaf
decomposition

φ∗OX̃ =
⊕
η∈G∗

L−1
η , (3.3)

where the eigensheaf L−1
η is with respect to the eigenvalue η of the action of G on φ∗OX̃ .

Now we consider the log-resolution π. By Proposition 3.1, since {(Lη, αη) | η ∈ G∗}
is a finite subgroup of Picτ(X,D), {(π∗Lη ⊗ OY (−bβηEc), βη) | η ∈ G∗}, with βη defined
by π∗(αηD) = βηE, is a finite subgroup of Picτ(Y, E). As before, we can construct the
corresponding normal G-cover of Y unramified above π−1(U) � U,

ρ : Ỹ = SpecOY

(⊕
η∈G∗

π∗L−1
η ⊗ OY (bβηEc)

)
→ Y,

where the group G acts on Ỹ and on ρ∗OỸ . The following result is similar to (3.3).

Proposition 3.3 (Budur [4, Corollary 1.12]). There is an eigensheaf decomposition

ρ∗OỸ =
⊕
η∈G∗

π∗L−1
η ⊗ OY (bβηEc),

where the eigensheaf π∗L−1
η ⊗ OY (bβηEc) is with respect to the eigenvalue η of the

action of G on ρ∗OỸ .
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3.2. Milnor fibres of homogeneous singularity. Let f (x0, . . . , xn) ∈ C[x0, . . . , xn]
be a homogeneous polynomial of degree d. We associate to f two closely related
objects, a Milnor fibre at the origin of Cn+1 and a complex projective hypersurface
of Pn. By [20, Lemma 9.4], the Minor fibre M of f at the origin of Cn+1 is
diffeomorphic to {(x0, . . . , xn) ∈ Cn+1 | f (x0, . . . , xn) = 1}. The geometric monodromy
T : M → M corresponds to the multiplication of elements of M by e2πi/d and induces
an endomorphism T ∗ of the complex vector space H∗(M,C).

Following [3, Section 4], we consider the smooth complex projective variety X = Pn

and the closed subscheme D of X defined by the zero locus of f . Put U := X \ D.
Since the action of Z/dZ on M is free, we have a natural isomorphism M/(Z/dZ) � U.
Denote by σ the quotient map M → U, which is the cyclic cover of degree d of U.
Then there is an eigensheaf decomposition of theOU-module sheafσ∗CM =

⊕d−1
k=0Vk,

whereVk is the rank-one unitary local system on U given by the eigensheaf of T with
respect to the eigenvalue e−2πik/d. This implies that

Hl(U, σ∗CM) =

d−1⊕
k=0

Hl(U,Vk).

Let us consider the Leray spectral sequence

Ep,q
2 = Hq(U,Rpσ∗CM)⇒ Hp+q(M,CM).

Since σ is a finite morphism of schemes, Rpσ∗CM = 0 for all p ≥ 1. Hence, by this
spectral sequence, Hl(U, σ∗CM) = Hl(M,CM) = Hl(M,C), for l ∈ N.

Lemma 3.4 (Budur [3]). If the C-vector space Hl(U,Vk) is nontrivial, it is the
eigenspace of T ∗|Hl(M,C) with respect to the eigenvalue e−2πik/d.

In fact, there are two commuting monodromy actions on Hl(M, C). Besides
T ∗, the other is the monodromy of Vk for each k around a generic point of D j
and, by [3, Lemma 4.1], it is given by multiplication by e2πikm j/d. Together with
[4, Proposition 3.3], this leads to the following important lemma.

Lemma 3.5 (Budur [3, Lemma 4.2]). Assume D =
∑r

j=1 m jD j, with D j irreducible of
degree d j. Then the element in Picτ(X,D) corresponding via the isomorphism RH (see
(3.2)) to the unitary local systemVk is (OPn (

∑r
j=1{km j/d}d j), ({km1/d}, . . . , {kmr/d})).

Notice that
∑r

j=1{km j/d}d j is an integer because, if km j = dn j + s j for 1 ≤ j ≤ r,
with n j, s j ∈ N and 0 ≤ s j < d, then

r∑
j=1

{km j

d

}
d j =

r∑
j=1

s jd j

d
=

r∑
j=1

km jd j − dn jd j

d
= k −

r∑
j=1

n jd j.

Fix a log-resolution π : Y → Pn of D. Let E = Y \ π−1(U) and let E j (for all j in
some finite set A) be the irreducible components of E. Let

L(k) := π∗OPn

( r∑
j=1

{km j

d

}
d j

)
⊗ OY

(
−

⌊ r∑
j=1

{km j

d

}
π∗D j

⌋)
. (3.4)
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Let B denote the set of integers k such that 0 ≤ k ≤ d − 1 and d divides km j for 1 ≤ j ≤ r,
and let B be the complement of B in [0, d − 1] ∩ Z.

Remark 3.6. If k is in B, then L(k) = OY . Furthermore, if k is in B and k , 0, so is
d − k; if k and k′ are in B, so is either k + k′ or k + k′ − d; hence we can consider B
as a subgroup of Z/dZ. Let m = gcd(m1, . . . ,mr) and choose u j ∈ N>0 with m j = mu j
for 1 ≤ j ≤ r. Then k ∈ B if and only if 0 ≤ k ≤ d − 1 and kus is divisible by

∑r
j=1 d ju j

for any 1 ≤ s ≤ r. Since u1, . . . , ur are coprime, the latter means that k is divisible by∑r
j=1 d ju j. Hence |B| = m.

For simplicity of notation, from now on, if A is a sheaf on Pn and l ∈ Z, we shall
write A(l) instead of A ⊗ OPn (l).

Proposition 3.7. With the notation as in Lemma 3.5,

(i) dimCGrp
F Hp+q(U,Vk) = dimC Hq(Y,Ωp

Y (log E)), for k ∈ B;

(ii) dimCGrp
F Hp+q(U,Vd−k) = dimC Hq(Y,Ωp

Y (log E) ⊗ L(k)−1), for k ∈ B.

In particular, for k ∈ B, dimCGr0
F Hq(U,Vd−k) is equal to

dimC Hn−q
(
Pn,J

(
Pn,

r∑
j=1

{km j

d

}
D j

)( r∑
j=1

{km j

d

}
d j − n − 1

))
.

Proof. From the group law (3.1) of Picτ(X,D) and definition of Vk, it is obvious that
Vk =V∨k =V0 for k ∈ B andVd−k =V∨k for k ∈ B. By Lemma 3.5 and Theorem 3.2,

Grp
F Hp+q(U,Vk) = Hn−q(Y,Ωp

Y (log E)∨ ⊗ ωY )∨

for k ∈ B, and

Grp
F Hp+q(U,Vd−k) = Hn−q(Y,Ωp

Y (log E)∨ ⊗ ωY ⊗ L
(k))∨

= Hn−q(Y, (Ωp
Y (log E) ⊗ L(k)−1

)∨ ⊗ ωY )∨

for k ∈ B. Serre duality gives (i) and (ii). For the rest, we again apply Lemma 3.5 and
the particular case in Theorem 3.2, together with the definition of multiplier ideal. �

Denote L
(k)
red := π∗OPn (k) ⊗ OY (−b k

d Ec), for 0 ≤ k ≤ d − 1.

Corollary 3.8. With the notation as in Lemma 3.5 and D reduced, for 1 ≤ k ≤ d,

(i) dimCGrp
F Hp+q(U,Vd−k) = dimC Hq(Y,Ωp

Y (log E) ⊗ L(k)
red
−1

);
(ii) dimCGr0

F Hq(U,Vd−k) = dimC Hn−q(Pn,J(Pn, (k/d)D)(k − n − 1)).

Proof. Applying Proposition 3.7 to the special case m1 = · · · = mr = 1 gives the
statements. Note that, in this case, B = {0} and B = {1, . . . , d − 1}. �

Lemma 3.9. With the notation as in Lemma 3.5, and noting that L(d) = L(0),

(i) dimC H1(U,Vk) = r − 1, if n = 2 and k ∈ B;
(ii) dimC Hl(U,Vd−k) =

∑
p≥0 dimC Hl−p(Y,Ωp

Y (log E) ⊗L(k)−1) for l ≥ 0, 1 ≤ k ≤ d.
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Proof. By Proposition 3.7(i), dimCGrp
F Hp+q(U,Vk) = dimC Hq(Y,Ωp

Y (log E)) for k in
B. Thus

dimC H1(U,V0) = dimC H1(Y,OY ) + dimC H0(Y,Ω1
Y (log E)).

Assume that n = 2. Then dimC H1(Y,OY ) = 0, because Y is birationally equivalent to
P2, and dimC H0(Y,Ω1

Y (log E)) = r − 1, from the proof of [11, Théorème 6], which
proves (i). Statement (ii) is a consequence of Proposition 3.7(ii). �

4. Monodromy characteristic polynomials and zeta function

4.1. Characteristic polynomials. The Milnor fibre M of the singularity f (x0, . . . , xn)
at the origin of Cn+1 is diffeomorphic to {(x0, . . . , xn) ∈ Cn+1 | f (x0, . . . , xn) = 1}, and
the monodromy T ∗ is induced by e2πi/d · (x0, . . . , xn) = (e2πi/d x0, . . . , e2πi/d xn) (see
Section 3.2). By definition, the (monodromy) characteristic polynomial ∆l(t) of
T ∗|Hl(M,C) is the monic polynomial

∆l(t) = det(tId − T |Hl(M,C)).

Let f j(x0, . . . , xn) be distinct irreducible homogeneous polynomials of degree d j and
D j = {(x0 : · · · : xn) ∈ Pn | f j(x0, . . . , xn) = 0}, for 1 ≤ j ≤ r, and set

f (x0, . . . , xn) =

r∏
j=1

f j(x0, . . . , xn)m j .

Fix a log-resolution π : Y → Pn of D = {(x0 : · · · : xn) ∈ Pn | f (x0, . . . , xn) = 0}, with
normal crossing divisor E. As mentioned in Section 3, there is an isomorphism
M/(Z/dZ) � U = Pn \ D so that the canonical projection σ : M → U induces an
eigensheaf decomposition σ∗CM =

⊕d−1
k=0Vk, whereVk are the rank-one unitary local

systems on U given in Lemma 3.5. By Lemma 3.4, for 1 ≤ k ≤ d and l ∈ N, the
vector space Hl(U,Vd−k) if nontrivial is the eigenspace of T ∗|Hl(M,C) with respect to
the eigenvalue e2πik/d. This, together with Lemma 3.9 and Remark 3.6, proves the
following lemma.

Lemma 4.1. The characteristic polynomial ∆l(t) of T ∗|Hl(M,C) is
∏d−1

k=0(t − e2πik/d)h(k)
l ,

where
h(k)

l := dimC Hl(U,Vd−k) =
∑

p+q=l

hq(Ωp
Y (log E) ⊗ L(k)−1

),

with hq(Ωp
Y (log E) ⊗ L(k)−1) = dimC Hq(Y,Ωp

Y (log E) ⊗ L(k)−1) and

L(k) = π∗OPn

( r∑
j=1

{km j

d

}
d j

)
⊗ OY

(
−

⌊ r∑
j=1

{km j

d

}
π∗D j

⌋)
.

As above, B denotes the set of k in Z such that 0 ≤ k ≤ d − 1 and d divides km j for
1 ≤ j ≤ r, B is the complement of B in [0, d − 1] ∩ Z and m = gcd(m1, . . . ,mr). From
Remark 3.6, B may be considered as a subgroup of Z/dZ. Let G be the quotient group
(Z/dZ)/B. For convenience, we shall identify k ∈ [0, d − 1] ∩ Z with its class in G.
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Lemma 4.2. ∆l(t) =
∏

k∈G(tm − e2πikm/d)h(k)
l for l ∈ N; in particular, ∆0(t) = tm − 1.

Proof. If k and k′ belong to the same class in G, we have h(k)
l = h(k′)

l . This, together
with Lemma 4.1, implies the first statement. Since h0(OY ) = 1, it remains to check that
h0(L(k)−1) = 0 for k ∈ G \ {0}. By Lemmas 3.4 and 3.9,

dimC H0(M,C) =
∑
k∈B

h0(L(k)−1
) +

∑
k∈B

h0(L(k)−1
). (4.1)

It is known that dimC H0(M,C) = m (see [9, Proposition 2.3]). Note that |B| = m
(see Remark 3.6), L(k) = OY for k ∈ B and h0(OY ) = 1. Then (4.1) is equivalent
to

∑
k∈B h0(L(k)−1) = 0, which implies that h0(L(k)−1) = 0 for k ∈ B; in particular,

h0(L(k)−1) = 0 for k ∈ G \ {0}. �

In the case n = 2, we write C, C j, ∆C(t) instead of D, D j, ∆1(t), respectively. Then
∆C(t) is an important invariant of the singularity f , considered as the global Alexander
polynomial of the nonreduced nonirreducible complex projective plane curve C (see,
for instance, [16, Section 3]). The following theorem is one of our main results.

Theorem 4.3. For n = 2, ∆C(t) = (tm − 1)r−1 ∏
k∈G\{0}(t2m − 2tm cos(2kmπ/d) + 1)`k ,

where

`k := dimC H1
(
P2,J

(
P2,

r∑
j=1

{km j

d

}
C j

)( r∑
j=1

{km j

d

}
d j − 3

))
.

Proof. According to Lemma 4.2, it suffices to prove that h1(L(k)−1) = `k and that

h0(Ω1
Y (log E) ⊗ L(k)−1

) = `d−k, (4.2)

for k ∈ G \ {0}. The former is a direct corollary of Proposition 3.7 and Lemma 3.9. To
prove (4.2) we consider a common G-equivariant desingularisation of X̃ and Ỹ , say,
θ : Z → X̃ and ν : Z → Ỹ , in the sense of [1], such that π ◦ ρ ◦ ν = φ ◦ θ =: u. Here,
we use the notation in Section 3.1 with X = P2, and, in particular, the normal G-cover
of P2,

φ : X̃ = SpecOP2

(⊕
k∈G

OP2

(
−

r∑
j=1

{km j

d

}
d j

))
→ P2,

and the normal G-cover of Y ,

ρ : Ỹ = SpecOY

(⊕
k∈G

L(k)−1
)
→ Y,

where, as mentioned previously, we identify k ∈ [0, d − 1] ∩ Z with its class in G.
Note that

G∗ =

{(
OP2

( r∑
j=1

{km j

d

}
d j

)
,
({km1

d

}
, . . . ,

{kmr

d

}))}
0≤k≤d−1

,
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which is by Remark 3.6 a subgroup of order d/m of the group Picτ(P2,C). We
may choose Z such that ∆ := Z \ u−1(U) is normal crossing. An analogue of
[11, Corollaire 4] shows that, for any q ∈ N,

(ρ ◦ ν)∗Ω
q
Z(log ∆) � Ω

q
Y (log E) ⊗ (ρ ◦ ν)∗OZ ,

Rp(ρ ◦ ν)∗Ω
q
Z(log ∆) = 0 if p > 0

(4.3)

(see also [12, Lemma 3.22]). By the Leray spectral sequence

Ep,q
2 = Hq(Y,Rp(ρ ◦ ν)∗Ω1

Z(log ∆))⇒ Hp+q(Z,Ω1
Z(log ∆))

and by (4.3), in particular,

H0(Y,Ω1
Y (log E) ⊗ (ρ ◦ ν)∗OZ) = H0(Z,Ω1

Z(log ∆)). (4.4)

By Proposition 3.3, (ρ ◦ ν)∗OZ = ρ∗OỸ =
⊕

k∈G L(k)−1, which yields the decomposition

H0(Y,Ω1
Y (log E) ⊗ (ρ ◦ ν)∗OZ) =

⊕
k∈G

H0(Y,Ω1
Y (log E) ⊗ L(k)−1

). (4.5)

From the proof of Lemma 3.9, the direct summand of (4.5) corresponding to k = 0 has
complex dimension r − 1.

Now we compute the dimension of the complex vector space on the right-hand side
of (4.4). As in the proof of [11, Lemma 7],

dimC H0(Z,Ω1
Z(log ∆)) = dimC H0(Z,Ω1

Z) + (r − 1). (4.6)

On the other hand, by [4, Corollary 1.13],

H0(Z,Ω1
Z) �

⊕
k∈G

H1
(
P2,J

(
P2,

r∑
j=1

{km j

d

}
C j

)( r∑
j=1

{km j

d

}
d j − 3

))
. (4.7)

In (4.7), the direct summand corresponding to k = 0 is H1(P2,OP2 (−3)) = H1(P2, ωP2 ).
By Serre duality, dimC H1(P2, ωP2 ) = dimC H1(P2,OP2 ) = 0. Therefore, from (4.4)–
(4.7), ∑

k∈G\{0}

h0(Ω1
Y (log E) ⊗ L(k)−1

) =
∑

k∈G\{0}

`k. (4.8)

Repeating the proof of [19, Proposition 4.6] and using h1(L(k)−1) = `k, for k ∈ G \ {0},

h0(Ω1
Y (log E) ⊗ L(k)−1

) ≥ `d−k.

This, together with (4.8), implies h0(Ω1
Y (log E) ⊗L(k)−1) = `d−k, thus (4.2) is proved. �
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4.2. A formula for the monodromy zeta function. By definition, the monodromy
zeta function of the homogeneous singularity f (x0, . . . , xn) at the origin O of Cn+1 is

ζ f ,O(t) =
∏
l≥0

det(Id − tT ∗|Hl(M,C))(−1)l+1
.

This function may be expressed via the polynomials ∆l(t) and then, by Lemma 4.2, we
obtain

ζ f ,O(t) =
∏
l≥0

(
tdimC Hl(M,C)∆l

(1
t

))(−1)l+1

=
∏
k∈G

(1 − e2πikm/dtm)
∑

l≥0(−1)l+1h(k)
l . (4.9)

As explained in [3], the only numbers α ∈ (0, n + 1) ∩ Q for which nα,O( f ), the
coefficient of tα in Sp( f ,O), may be nonzero are of the form (k/d) + p, with k, p ∈ Z,
1 ≤ k ≤ d and 0 ≤ p ≤ n. From (2.1) and Lemma 3.4,

n(k/d)+p,O( f ) =
∑
j∈Z

(−1) j dimCGrn−p
F Hn+ j(U,Vk), (4.10)

for integers k, p with 1 ≤ k ≤ d and 0 ≤ p ≤ n, where Vk is the rank-one local
system corresponding to the element (OP2 (

∑r
j=1{km j/d}d j), ({km1/d}, . . . , {kmr/d})) in

Picτ(X,D) via RH in (3.2) (see Lemma 3.5). Note that Vd =V0. By Proposition 3.7
and (4.10),

n(d−k)/d+p,O( f ) =
∑
j∈Z

(−1) jhp+ j(Ωn−p
Y (log E) ⊗ L(k)−1

), (4.11)

for k ∈ G when p < n, and k ∈ G \ {0} when p = n, where the quantities L(k) and
hq(Ωp

Y (log E) ⊗ L(k)−1) are as in Lemma 4.1 (see also (3.4)).

Theorem 4.4. The invariants ζ f ,O(t) and Sp( f ,O) are related by

ζ f ,O(t)(−1)n+1
= (1 − tm)1+

∑n
p=1 np,O( f )

∏
k∈G\{0}

(1 − e2πikm/dtm)
∑n

p=0 n(d−k)/d+p,O( f ).

Proof. Recall from Lemma 4.1 that h(k)
l =

∑
p+q=l hq(Ωp

Y (log E) ⊗ L(k)−1). Since
h0(OY ) = 1 and hq(OY ) = 0 for all q ≥ 1, formula (4.11) gives

(−1)n+1 + (−1)n+1
n−1∑
p=0

np+1,O( f ) =
∑
j∈Z

(−1)n+ j+1h(0)
n+ j.

As in the proof of Lemma 4.2, if k ∈ G \ {0}, then h0(L(k)−1) = 0, so by (4.11),

(−1)n+1
n∑

p=0

n(d−k)/d+p,O( f ) =
∑
j∈Z

(−1)n+ j+1h(k)
n+ j.

Now applying (4.9) gives the statement of the theorem. �
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Remark 4.5. Assume that f (x0, . . . , xn) is a homogeneous polynomial of degree d and
has an isolated singularity at the origin O of Cn+1. Then, by [24, Example 5.11],

Sp( f ,O) = t(n+1)/d(1 + t1/d + t2/d + · · · + t(d−2)/d)n+1

=

d∑
k=1

n∑
p=0

( ∑
∑d−2

j=0 k j=n+1∑d−2
j=0 ( j+1)k j=dp+k

(n + 1)!
k0!k1! · · · kd−2!

)
t(k/d)+p.

This implies that, for 1 ≤ k ≤ d and 0 ≤ p ≤ n,

n(k/d)+p,O( f ) =
∑

∑d−2
j=0 k j=n+1∑d−2

j=0 ( j+1)k j=dp+k

(n + 1)!
k0!k1! · · · kd−2!

.

Since f has an isolated singularity O, it must be reduced, so by [9, Proposition 4.1.21],

ζ f ,O(t) = (td − 1)−χ(U).

On the other hand, from Theorem 4.4,

ζ f ,O(t)(−1)n+1
= (1 − t)1+

∑n
p=1 np,O( f )

∏
1≤k≤d−1

(1 − e2πik/dt)
∑n

p=0 n(d−k)/d+p,O( f ).

It follows that

1 +

n∑
p=1

np,O( f ) =

n∑
p=0

n(d−k)/d+p,O( f ) = (−1)nχ(U),

In particular,

(−1)nχ(U) = 1 +

n∑
p=1

∑
∑d−2

j=0 k j=n+1∑d−2
j=0 ( j+1)k j=dp

(n + 1)!
k0!k1! · · · kd−2!

.

For example, the homogeneous polynomial f (x, y, z) = x4 + y4 + z4 has an isolated
singularity at the origin O of C3 and it defines a projective curve in P2. The Euler
characteristic of the complement U of this curve in P2 is

χ(U) = 1 +
3!

2!1!0!
+

3!
0!1!2!

= 1 + 3 + 3 = 7.

The monodromy zeta function of the singularity of f at O is

ζ f ,O(t) =
1

(t4 − 1)7 .
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[19] F. Loeser and M. Vaquié, ‘Le polynôme d’Alexander d’une courbe plane projective’, Topology 29

(1990), 163–173.
[20] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61

(Princeton University Press, Princeton, NJ, 1968).
[21] J. Milnor and P. Orlik, ‘Isolated singularities defined by weighted homogeneous polynomials’,

Topology 9 (1970), 385–393.
[22] A. Nadel, ‘Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature’, Ann.

of Math. (2) 132(3) (1990), 549–596.
[23] M. Saito, ‘Mixed Hodge modules and applications’, in: Proceedings of the ICM Kyoto, 1990

(ed. I. Satake) (Springer, Tokyo, 1991), 725–734.
[24] J. H. M. Steenbrink, ‘Mixed Hodge structure on the vanishing cohomology’, in: Real and Complex

Singularities, Oslo 1976 (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977), 525–563.
[25] J. H. M. Steenbrink, ‘Intersection form for quasi-homogeneous singularities’, Compositio Math.

34 (1977), 211–223.

https://doi.org/10.1017/S0004972719000613 Published online by Cambridge University Press

http://www.arxiv.org/abs/0809.3443
https://perswww.kuleuven.be/~u0089821/LNLuminy.pdf
https://doi.org/10.1017/S0004972719000613


[15] Homogeneous singularities 409
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