Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:13:22.309Z Has data issue: false hasContentIssue false

THE NUMBER OF ROOTS OF A POLYNOMIAL SYSTEM

Published online by Cambridge University Press:  09 November 2020

NGUYEN CONG MINH
Affiliation:
Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam e-mail: [email protected]
LUU BA THANG*
Affiliation:
Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam
TRAN NAM TRUNG
Affiliation:
Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam and TIMAS, Thang Long University, Hanoi, Vietnam e-mail: [email protected]

Abstract

Let I be a zero-dimensional ideal in the polynomial ring $K[x_1,\ldots ,x_n]$ over a field K. We give a bound for the number of roots of I in $K^n$ counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The third author is partially supported by NAFOSTED (Vietnam), grant number 101.04–2018.307.

References

Alon, N., ‘Combinatorial Nullstellensatz’, Combin. Probab. Comput. 8 (1999), 729.10.1017/S0963548398003411CrossRefGoogle Scholar
Alon, N., Nathanson, M. B. and Ruzsa, I. Z., ‘The polynomial method and restricted sums of congruence classes’, J. Number Theory 56 (1996), 404417.CrossRefGoogle Scholar
Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).Google Scholar
Cox, D., Little, J. and O’Shea, D., Using Algebraic Geometry (Springer, New York–Berlin–Heidelberg, 1997).Google Scholar
Cox, D., Little, J. and O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn (Springer, New York, 2006).Google Scholar
Feng, G.-L., Rao, T. R. N., Berg, G. A. and Zhu, J., ‘Generalized Bezout’s theorem in its applications in coding theory’, IEEE Trans. Inform. Theory 43 (1997), 17991810.10.1109/18.641546CrossRefGoogle Scholar
Geil, O. and Høholdt, T., ‘Footprints or generalized Bezout’s theorem’, IEEE Trans. Inform. Theory 46(2) (2000), 635641.CrossRefGoogle Scholar
Grayson, D. R. and Stillman, M. E., Macaulay2, a Software System for Research in Algebraic Geometry, available at http://www.math.uiuc.edu/Macaulay2/.Google Scholar
Kós, G. and Rónyai, L., ‘Alon’s Nullstellensatz for multisets’, Combinatorica 32(5) (2012), 589605.10.1007/s00493-012-2758-0CrossRefGoogle Scholar
Lasoń, M., ‘A generalization of combinatorial Nullstellensatz’, Electron. J. Combin. 17(1) (2010), Note 32, 6 pages.CrossRefGoogle Scholar
Tao, T., ‘Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory’, EMS Surv. Math. Sci. 1 (2014), 146.10.4171/EMSS/1CrossRefGoogle Scholar