Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T22:50:50.942Z Has data issue: false hasContentIssue false

Local integral metrics and Daniell-Loomis integrals

Published online by Cambridge University Press:  17 April 2009

M. Diaz Carrillo
Affiliation:
Dpto Analisis Matematico, Universidad de Granada, Granada, Spain
H. Günzler
Affiliation:
Mathematisches Seminar Der Christian-Albrechts-Universität Kiel, Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently Guerrero and the first author (Diaz Carrillo) proved an anologue to Daniell's extension process which works for arbitrary nonnegative linear functionals, without any continuity conditions. With the aid of Schäfke's local integral metrics we generalise this extension process and prove convergence theorems using a suitable local mean convergence, which can be traced back to Loomis.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Aumann, G., ‘Integralerweiterungen mittels Normen’, Arch. Math. 3 (1952), 441450.CrossRefGoogle Scholar
[2]Bichteler, K., Integration theory, Lecture Notes in Mathematics 315 (Springer-Verlag, Berlin, Heidelberg, New York, 1973).Google Scholar
[3]Guerrero, P. Bobillo and Carrillo, M. Díaz, ‘Summable and integrable functions with respect to any Loomis system’, Arch. Math. 49 (1987), 245356.Google Scholar
[4]Guerrero, P. Bobillo and Carrillo, M. Díaz, ‘On the summability of certain μ-integrable functions’, Arch. Math. 52 (1989), 258264.CrossRefGoogle Scholar
[5]Bourbaki, N., Intégration. Elements de Mathematique XIII, Livre VI, (Hermann, Paris, 1952).Google Scholar
[6]Daniell, P.J., ‘A general form of Integral’, Ann. of Math. 19 (1917), 279294.CrossRefGoogle Scholar
[7]Carrillo, M. Díaz and Günzler, H., ‘Finitely additive integration II’, Extracta Mathematicae 4 (1989), 8183.Google Scholar
[8]Dunford, N. and Schwartz, J.T., Linear operators I (Interscience, New York, 1957).Google Scholar
[9]Floret, K., Maβ- und Integrationstheorie, (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
[10]Günzler, H., Integration (Bibliogr. Institut, Mannheim, 1985).Google Scholar
[11]Günzler, H., ‘Convergence theorems for a Daniell-Loomis integral’, Mathematica Pannonica 2 (1991), 7794.Google Scholar
[12]Liubicich, P., ‘Sul prolungamento dell'integrale’, Rend. Instit Mat. Univ. Triestre 8 (1976), 108121.Google Scholar
[13]Loomis, L.H., ‘Linear functionals and content’, Amer. J. Math. 76 (1954), 168182.CrossRefGoogle Scholar
[14]Munˉoz Rivas, P., ‘Integratión finitamente aditiva: extensión integral con convergencia I-local’, Serv. Publ. Univ. Granada Gr-1695 (1990).Google Scholar
[15]Pfeffer, W.F., Integrals and measures, (Dekker, New York, 1977).Google Scholar
[16]Schäfke, F.W., ‘Integrationstheorie I.’, J. Reine Angew. Math. 244 (1970), 154176.Google Scholar
[17]Schäfke, F.W., ‘Integrationstheorie II’, J. Reine Angew. Math. 248 (1971), 147171.Google Scholar
[18]Schäfke, F.W., ‘Integrationstheorie und quasinormierte Gruppen’, J. Reine Angew. Math. 253 (1972), 117137.Google Scholar
[19]Schäfke, F.W., ‘Lokale Integralnormen und verallgemeinerte uneigentliche Riemann- Stieltjes-Integrale’, J. Reine Angew. Math. 289 (1977), 118134.Google Scholar