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LOCAL INTEGRAL METRICS AND DANIELL-LOOMIS INTEGRALS

M. Diaz CARRILLO AND H. GUNZLER

Recently Guerrero and the first author (Diaz Carrillo) proved an anologue to
Daniell’s extension process which works for arbitrary nonnegative linear function-
als, without any continuity conditions. With the aid of Schafke’s local integral
metrics we generalise this extension process and prove convergence theorems using
a suitable local mean convergence, which can be traced back to Loomis.

INTRODUCTION

Recently in {3] an analogue to Daniell’s extension process was given which works
for arbitrary nonnegative linear functionals, without any continuity conditions. With
the aid of Schifke’s local integral metrics [19] we generalise here this extension process
and prove convergence theorems (which do not hold for B of [3]); this is possible using
a suitable local mean convergence, which can be traced back to Loomis [13, p.179).

In Section 1 we recapitulate the Aumann-Schifke integration theory for general
integral metrics, prove an analogue of Lebesgue’s convergence theorem, and introduce
measurability. In Section 2, for general local integral metrics, more convergence the-
orems are obtained, extending results of [19] (we do not use ¢((1/n)h) — 0 or the
restrictive 2 of [19]). In Section 3 a unified treatment of Riemann- u, abstract Riemann-
Loomis, Daniell and Bourbaki integrals is given.

With Schifke [16, 17, 18, 19), most results extend to Banach space valued func-
tions, using z Nt of [10], some even to function-valued integral metrics of (18, 19].
Part of our results of 3.E on L(I | B) have been announced in (7).

0. NOTATIONS
We extend the usual + in K := {—oc0} U reals RU {co} to KR x R by
r+8:=0, r4s:=00, r+8:=-00,if r=-s¢€ {00, ~0};

1)

r— 8:=r + (—a) et cetera.
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With Vs := max(r, s), rAs :=min(r,s), rNt:=(rAt)V(-t)if 0<teR
one still has for arbitrary a,b,c,d € R, 0 < t € R the Birkhoff-inequalities

lant—bNt| <2(la—bAt), |laAc—bAc|<|a—b,
l[aVe—-bVe| < la—b

(2

(3) el =Pl <le—bl <la—c|l+]c=b], |(a+d)—(c+d)<l|a—c|+[b—d

(Aumann [3] (*b, *c)); +, +, + are commutative, + is distributive with 0-(+o0) :=
0 =: (£00)-0, but not associative; + is associative. On the set R” of functions f: X-
R we define =, £, +, A, vV, N, -, | |, < pointwise on X with |f|(z) :=|f(z)|, f<g
if and only if f(z) < g(z) for all z € X. Define

(4) +M:={feM:0<f} if McR".

(k) = (k-‘i)jeJ means a net with k; € R* , j € J where J is a set directed by <.

1. INTEGRAL METRICS

Standard assumptions in this and the following sections are
) =X —X =
(5) X isanon-emptyset, 0€ BCR, g¢: +R" — +R:=[0, oo].

For later reference and the benefit of the reader, we first collect some results mostly
due to Aumann [1], Schifke [16, 19]:

DEFINITION 1: ¢: + R~ — +R is called an integral metric on X if

(6) q(0) = 0 and ¢(a) < q(b) + q(c)if a < b+e, abcc +K. ([16])
For an integral metric ¢ one gets with (3)

(1) la(lal) — q([b)| < q(la — b)), g(c)< g(d), ifa,byec,de RY, 0<e<d

(ll_lx, q) is a topological space using {a € R*: q(le ~ ap]) < €} with — of (1).

DEFINITION 2: Ny:={k € R q(lk]) = 0} (g-nulfunctions), if M C R” and q
is an integral metric on X, we define

(8) M9 := closure of M in (ﬁx, q)
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(g-integrable fur‘zctions, with respect to M).

LeMMA 1. If q is an integral metricon X, 0 € B Cﬁx, *e{+, = n] |y 8
with s € R} and B is closed with respect to *, for example h + k € B (respectively
hN|k|, respectively |h| € B) if hyk € B, then B is also closed with respect to this *;
BUN, C B? = (B?)?. N, is closed with respect to all operations from {---}.

Wecall B C R* a function vector lattice if it is a real linear space under pointwise
=, +, s+, such that h € B implies |h| € B; then hAk, hVk € B for h,k € B, thus
hN |kl € B.

I'| B Loomis system (on X ) means

(9) B is a function vector lattice, I: B — R is linear, I(h) 2 0if h € +B.
(10)

gBI means q is an integral metric on X, (9) holds, I is g-continuous in 0

If only an integral metric ¢ on X and a function vector lattice B are given, ¢BO0 is
true with I = 0, all the following results hold then.

THEOREM 1. (Aumann). If ¢BI of (10) holds, then the set B? of g-integrable
functions is closed with respect to +, s- (s€R), | |, V, A, N. Also BUN, C B? =
(B?)? and there is a unique g-continuous extension I9: B* - R of I | B.

For this I9 one has I%(sf) = sI(f), I9(f+g) = I(f) + I%g), I(f)| €
I(|f) =: | fllza, 19(k) < I%(1) if f,g,k,l € BY, s € R, k < I; || ||fo is a semi-
norm on B9 which is g-continuous, so ¢(|k|) = 0 implies k € B? and I?(k) =0.

DEerINITION 3: If (5) holds, for k,l € R” , with k* :=kV0:

(1)
k = 1(q) respectively k <! (g) means g(|k — l|) = O respectively q((k — l)+) =0.

LEMMA 2. If (5) holds and g is an integral metric on X, then = (q) is an
equivalence relation in ﬁx; < (gq) is there transitive; they are further compatible with
+ of (1) and s-, s € R respectively +R.

COROLLARY I. If ¢BI of (10) holds, f € BY, k € R with k = f(q) then
k € B? and I(k) = I*(f).

CoroLLARY II. ¢BI, f € B? imply f. € BY, fic and f, € Ny, I9(f)
I*(fe).

Here k.(z) := k(z) if k(z) ER, :=0 else; ky :=k — ke, koo := ky VO, ke =
k. AO.

COROLLARY III. ¢BI, f,g€ BY, ke R with k(z) = f(z)+g(z) if f(z) €R
and g(z) € R imply k € B? and I(k) = I(f) + I(g).

il
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CorOLLARY IV. ¢BI, f,g € B? imply fig, f +g € B? and I(f+g) =
I(f) % I(g).

COROLLARY V. ¢BI, f,g € BY f < g(q) imply I(f) < I%(g).

COROLLARY VI. The extension process I | B — I9B? is iteration complete.

This means: If ¢BI holds, B := BinRX, I=17 | E, then qﬁf holds, B9 = B9
and I9 =19,

In the proofs one uses |fo — hpn| < |f — hal, |ful € 2]f — hal|, for Corollary III
|k —(h+1)| <|f — k| + |9 — 1|, and, valid for any a,b,c,d € R, t € +R,
(12) (a—bd)vt<(a—c)Vt+(c—-b) VL,

((a+8) = (c+d)VE< (@) VE)+((b-d) V1)

(13) a<bt(a-b)"t.

DEFINITION 4: With (5), k € R”. k ¢ B-measurable means that kN h € B? for
all A € +B,

(14) Mn(q, B) :={k € R": k ¢ B-measurable}.

THEOREM 2. If ¢BI holds and k € ﬁx, then the following three statements are
equivalent:
(a) keB*
(b) k is g- B-measurable and |k| € B?
(c) k is g- B-measurable and there is ¢ € B? with |k| < ¢ (q).
Proor: (a) = (b) = (c) by Theorem 1. For (c) = (a), with (13) and Corollary IV
we can assume |k| < ¢; then 0 < ¢ and for € > 0 thereis h € B with ¢(|¢ — h|) < ¢;

since
(15) g — |R]]| < ¢ — k|, |h|€ +B, one can assume h > 0.
Then |[k—kNh| =]kNp—kNh| < 2|p—h| by (2), so g(lk—kNh|) < 2, or
ke (B?)? = B9.
For convergence theorems, we need an analogue to “convergence in measure”:
DEFINITION 5: For J net, k,k; € RX for j € J, (5):
kj — k (¢, B) means

for each € > 0 and h € +B there is j = j.» € J such that g(|k —k;|Ah) < € if
j <1 € J (g-B-local convergence).

If with integral metric g, fixed B and the same J, k; — k (¢, B) and Il; — l(q, B),
then sk; — sk (g, B) and k; +1; — k +1(q, B) for s € R by (8), (3).

https://doi.org/10.1017/50004972700015872 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015872

(5] Local integral metrics 415

THEOREM 3. If q is an integral metricon X, 0 € B C ﬁx, J net, kj, k €
R* with kj — k (g, B) and |k; — k| < ¢ (q) for j € J with some ¢ € BY, then
q(|k — k;) — 0.

ProoF: If Il; := |kj — k| < ¢, then as in the proof of Theorem 2, for ¢ > 0
choose h € +B with g(l¢ — h|) < €, then j with g(|Jk —k;|AR) < e if i > j. Now
L=LAR+(L-LAR)Y=LAR+(LiAe—LAR)S AR+ |p—h|,so q(li) < 2 if
127 =]Je-

In the general case, I; < ¢ 4 pi < ||+ pi by (15) with p; := (L — )t € N,; then
OKhi:=L-LApi<|p|€ B! fori€J and g(h; AR) < q(l; AR) - 0if he +B,
that is h; — 0 (¢, B), so g(h;) — 0 by the above. Now l; = h; + I; A p;, therefore
0 < g(k) < g(hs) + alpe) = a(hs) - 0. 0

CoroLLARY VII. (Lebesgue’s convergence theorem for B?): If ¢BI holds, f;,
¢ € B, keR", fj » k (¢ B) and |f; —k| < o(q) for j € J then k € BY,
q(1f; — kl) — 0, I?(f;) - I(k).

PROOF: By Theorem 3 and 1, k € (B%)Y = B? and |I%(f;) — I%(k)| < I(|f; —k|)
- 0.

LEMMA 3. If(5) holds and q is an integral metricon X, gj € Mn(q, B), k € R
and g; — k(q, B) then k € Mn(q, B).

PROOF: |g; Nh—kNh|<2(g; — k| A k) by (2),s0 kNh € (B?)? = B? by Lemma
1. 0

LEMMA 4. If ¢BO of (10) holds, f,g € Mn(q, B), l€ B, s€ R and k € R"
then L, |f|, fAg, fVa, fr, sf, fnlg|, f+! belong to Mn(g, B).

f+ g € Mn(q, B) if there are fo,90 € B? with f > fo and g > go.

Besides k € Mn(q, B) © kAh € Mn(q, B) for he +B & f*, f~ € Mn(q, B).

With only f > 0, for example, in general f + g ¢ Mn(q, B). ([10], A5.100).

PROOF: |r|Nt=|rNt|, (-r)Nt=—(rNt), (st)N(st) =s(rNt), (pPAT)NEt=
(pNt)A(rNt), vt = (£r) VO, (pN|r))Nt=(eNt)N|rNt| if p,rsteR, s >0,
t>0,(2),(3) and Theorem 1. f+1€ M by Lemma 3 if f +v € M for v € B; but
then (f +v)Nh = ((fo) AR)V(=h) = ((fA(h—v)) +2)V(=h)) = [(fA(h-v))V
(=h—v)]+v; [ ] € Mn since My is A and V-closed; also |[ ]| < || + |v| € B, do
[ ] € B? by Theorem 2, then (f+v)Nhe BY. kNh=(kAR)Nh=k*Ah—k~ AR
if h € +B, Theorems 1,2. If f,g >0, then (f+g)Nh=(fAh+gAh)Ah € B?;else
F+9=(f +9g")-(f~ +97), with f* + g% € Mn, |f~ +g7| <|fo| + 90| € BY, 50
—l:= f7 + g~wB? by Theorem 2.

CoroLLARY VIII. If ¢BI holds, g; € Mn(q, B), k € R, g; — k (g, B) and
there is ¢ € BY with |k| < ¢ (q), then k € BY.
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This variant to Corollary VII follows from Lemma 3 and Theorem 2; however, even
if gn € B?, I9(g,) — I9(k) is false in general.

Also Theorem 3/Corollary VII, VIII become false if only |f; — k| < ¢ (¢gB) with
gp of Section 2 (Example 2 in Giinzler [11, see Section 2]).

Finally, £9 := B9/N, is a vector lattice with integral I? and norm I%(|--|) (Au-
mann [1, p.445]).

2. LOCAL INTEGRAL METRICS

DEFINITION 6: If X, B, g are as in (5), then
(16) gp(k) :=sup{q(k Ah); h € +B}, fork € +R*.

This is a simplified version of Schifke’s definition [19, p.120]. Here it gives all the

relevant results, under weaker assumptions.

LEMMA 5. If (5) holds and q is an integral metric on X, then qp of (16) is also
an integral metric on X, with qg = g < q; qp(k) = q(k) if k € +ﬁx and k <
some h € B, so kj — k (q, B) of Definition 5 is equivalent with k; — k (g8, B); if
additionally |B| C B, then gp(k A @) =q(k A ) for k€ +R*, ¢ € +B?.

PROOF: As in Schifke [19, p.120-121], with

(17 (r+s8)At<rAt+sAL ifr,a,t€+ﬁx.

0

LEMMA 6. If ¢BI of (10) holds, then also qp BI is true, so B8 and I'B: BB —
R are well defined, with

(18) B cC BY C BB, IcIfc I,

THEOREM 4. If (5) holds, q is an integral metric on X, kj,k € ﬁx, then
gs(|k; — k|) — 0 if and only if

(19) kj — k (g, B) and (k;) is a gg-Cauchy-net.

PROOF: As in Schifke [19, p.121-122]. 0

CoroLLARY IX. If (5) holds with integral metric ¢, then f € B98 if and only
if to f there exists a sequence (hy) with h, € B and

(20) hy, — f(g, B), q(|lhn—hm|)—=0 asn,m — oco.
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COROLLARY X. If (5) holds with integral metric q,f; € B8, k€ K", f; — k
(¢, B) and (f;) gp-Cauchy then k € B8, gg(lk — f;|) = 0 (and I'5(f;) — I98(k) if
gBI holds).

This closedness-property of B8 can be looked at as a convergence theorem for
B%B ; by Example 2 of [11] an analogue for general B? is false.

CorROLLARY XI. If ¢BI holds, for f € R the following statements are equiv-
alent:

(a) feB*
(b) f € B8 and there exists ¢ € B? with |f| < ¢ (q)
(c) f € Mn(gB, B) and there exists ¢ € B with |f| < ¢(q)-
So Mn(gB, B) = Mn(g, B).
PROOF: (a) = (b) with ¢ = |f| and (b) = (c) follows from Theorems 1 and 2.
For (c) = (a), fNh € B% for h € +B, so there are h, € B with
ge(|[fNh—h,nh|) < gB(2|f — ha]) — O by (2); since |[fNh—h,Nk| £ 2h € B,
by Lemma 5 ¢(|fNh—h,Nh|]) = gp(|fNh -k, Nk|) = 0, thus f Nk € B?; Theo-
rem 2 yields f € BY. |f Nh| < h for the Mn-statement. 0
Again, |f| < ¢(g) cannot be weakened here to < (¢g); similarly = (q) is stronger
than = (gg). One only has, for k,l € R" , with (5):

(21) k=1(¢gg) @ k=1(q,B): & K,:=k —1(q, B) (Definition 5),

similarly for < (gs).
For gg Theorem 2 can be sharpened with:
DEFINITION 7: (Schafke). Under (5), g is called B-semiadditive if one has

n
(22) h, € +B, sup{q(th);neN}<oo=>q(h,.)—»0asn—-»oo.
1

q is called B-additive if h,k € +B imply ¢(k + h) = g(k) + q(h).

Obviously “gq B-additive” implies “q B-semiadditive” if +B is + closed.

Any integral metric extension of || ||, = (f| I dp)llp from L*(p,R) is B-
semiadditive if 1 € p < oo, where B = step functions Bg or LP, with arbitrary
measure space (X, 2, x); only for p = 1 has one B-additivity; see Section 3.F.

LEMMA 7. If (5) holds, ¢ is an integral metric on X, |B|+ |B| C |B| C B and
q B-semiadditive then q is B9-semiadditive and qg B98 -semiadditive.

This analogue to Satz 5.1 of Schafke [19] follows as in [16, p.161-162].
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THEOREM 5. If ¢BO0 of (10) holds, q is B-semiadditive, k is q- B-measurable
and gp(|k]) < oo, then k € BB

Proor: With Lemmas 5, 4 and Theorem 2 one can assume k > 0; then one can
argue as in Schifke [19, p.127], showing first: For ¢ > 0 there exists h, € +B with

(23) g(kAh—kAh,)<e forall hwith h, <h € B.

1

Without “B-semiadditive” or with ¢ instead of gg Theorem 5 becomes false
though ¢- and gp-measurability coincide (Corollary XI): Example 1 below.

LEMMA 8. If (5) holds, k, kj € +KR, kj — k (g, B) then gn(k) < Limga(k;).
PROOF: q(Jk Ah—k; Ah|) < 2g(|k—kj|Ah) > 0 by (2)if h € +B;if a < gg(k)
thereis h € +B with a < g(k A h); now g(k Ah)—g(kj AR) < q(lk AR —k;j AR]) >0,
so a < g(k; Ah) < gp(k;) if j > jan. 0
With this and Lemma 3 one gets the following analogue to Fatou’s Lemma.

CoroLLARY XII. If ¢BI holds, q is B-semiadditive, f; € Mn(q, B), k € ﬁx,
i = k (g, B) and Lima(If;[) < oo or ga(Ik]) < oo, then k € B

Here the same remarks as after Theorem 5 apply; also in general ¢g(|f;]|) /> a8(|k]).

THEOREM 6. (Monotone Convergence Theorem for B98 )

Assume ¢BI, q B-semiadditive, k € ﬁx, (ff)jel net with f; € B, f; —
k(q, B), fi < fj (gB) if i < j < J, and Lim;qp(|f; — fio|) < oo for some jo € J.
Then k € B8, gp(|f; —k|) = 0, f; < k(qB), I'B(f;) — I8(k) = sup IB(f;).

jeJ

EXAMPLE 1: f X = N, B = ¢y := {a € RN: g¢(n) = Oforn > somen,},
g(k) = gB(k) = ||kl := sgglk(n)h fa(m):=1iHf 1 <m<n, :=0else, I =0, then
one has ¢BI, 0 < foo1 < fon = k:=1(q,B), ga(fn) =1, but k£ ¢ B = BB =
co(N, R) C RN, so g is not B-semiadditive.

If g¢(h) < o0 for h € +B, also g # o0 on B8, the limgg(|fj — fi,|) < oo if and
only if limgp(|f;]) < co.

For B? instead of B8 Theorem 6 becomes false by Example 2 of [11].

ProoF OF THEOREM 6: g; := f; — fj, — | := k — fj; (g, B) by the remark after
Definition 5; Lemma 4, Corollary XII and III give [,k € B8 .

Furthermore f; — f; — fi — k(g, B) and p;; := (fi — f;)T — (fi —k)* (q, B) as
j — oo by (2); since p;; € + Ny, if i < j, one gets (fi — k)" € Ny, or fi < k(gg) for
1 € J by Lemma 8; Corollary V yields I98(f;) < I98(k).
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With (13) and p; := pj,i one has 0 < g; + p;, furthermore one can show g; <

9; + pij € Ny, yielding gs(|g:]) < ¢5(|g;]) or sup g8(|g;]) = limgg(|g;]) := to < co.
J2J0

(f;) is gB-Cauchy, if for each € > 0 there is i, with gp(f; — fi,) < e if j > ic;
if this is false, there is €y > 0 and recursively a sequence (3,,) with jo < 71 < ....

and ¢B(|fj, — fis_,|) > €0, k € N. Since |fj — fi| < (fj — fi) + 2pij, inductively
Y |fiv = fioal € 1fin = fio| + In with gg(l,) = 0. The associativity of + gives
1

n+1

Yo fis = Fiscal S UFin = Fiol + 1) + ((Fings — Fin) +71)
1

S((fin — fio) +72) + ((fJ'n+1 - fJ'n) + 7'1)
= [(fin+1 - fin) + (fin = fi)l +7s
< |f.1'n+1 - fJ’o| +7e
with ry,..., 74 € Ngg, since with (3) one can show [---] < |fijnp1 — fio| + Pio,jn +
Pjn,ing1 -
But then g5 (élfn —f,,‘_l|) 98(1f;» = fil) < to < oo for n € N. With

Lemma 7 one gets the contradiction gg (lfu = fir s |) — 0.

Theorem 4 gives therefore ¢g(|f; — k|) — 0, then IB(f;) — I8 (k). a

LEMMA 9. If0 € |B|C B C ﬁx, q is an integral metric on X, ¢ := qp and
BC BC BY, then §p = 95 = 9B < ¢ and all are integral metrics, B? C B c B c
B = B9.

This follows from Lemma 5, (7), (2) and the definitions.

EXAMPLE 2: X = N, B = ¢o9 as in Example 1, ¢ := 0 on ¢gp, g:=1 else, g is
even B-additive, B := B9 NR¥; here all five “C” and the two “<” in Lemma 9 are
strict.

Especially, the extension process I | B — I98 | B8 is also iteration complete (see
Corollary VI):

CorOLLARY XIII. If ¢BI holds and B =B NRX, J:= 8 |
then ¢BT and GBI hold, B = BY = B% = B = Bis = B’s I =J1
DEFINITION 8: For M C R , q: +ﬁx — +R: Cx (g, M) means

g(h—hAn)—0asn— oo, foreach h € + M.
M is called Stoneanif hAl€ M for each h e +M.

With this, BB is closed with respect to improper integration:
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COROLLARY XIV. Assume qB0 of (10), Cu (g, B), q B-semiadditive and k €

ﬁx;if kNn is gg- B-measurable for each n € N and sup (|k N n|) < oo, then k € B®
neEN
and gg(lk —kNn|) - 0.

Proor: If h € +B, kN(hAn) = (kNn)Nh € B? by Corollary XI and
a(lk Nk — k0 (b An)]) < 265 — b An) < a(IkIN h — 810 (5 Am)) + (k1N (h A m) <
2¢(h — h An)+gB(Jk| A n) £ 1+supgp(|k Nm]|) for some n = n(h), Theorem 5 yields
k € BB,

For ¢ > 0 there is h € B with gg(|[k—h|) < €, then ¢g(lk—kNn|) <

ge(lk — h|) + gp(lh —hNnl|) + gs(lhNn—kNn|) < e+ gp(|h| - [k An) + 2¢
3¢ + g(Jh| — |h| An) by Lemma 5, so € 4¢ for n > some n,.

Especially we have kNn — k(q, B); for this “q B-semiadditive” and “kNn gp- B-
measurable” are superfluous, provided k € BI8.

“kNn g¢p- B-measurable” is also necessary for Stonean B, since then BP? is Stonean
for an integral metric p, implying fNte€ B? if f€ BP, t € +R.

Again all assumptions are independent and essential, Corollary XIV also becomes
false if one replaces gp by gq.

For Stonean B the Cu-continuity condition can be weakened in Corollary XIV:

LEMMA 10. If M C +R" with hAn and h—hAn€ M forhe M, ne€N, q
is an M-semiadditive integral metric with q(h An) — g(h) as n — oo if h € M, then
g(h—hAn)—0 asn— oo for h € M with q(h) < co.

ProoF: If g(h— hAn) > eg > 0 for n € N, there are n; < ny < --- € N with
g(hAnjp1 —hAn;) > e for j € N, since (h—hAn)Am =hA(n+m)—-hAn;

with kj := hAnjy; —hAnj € M one has q(zk,-) =q(h Anmy1 — h Any) < q(h),
1
yielding the contradiction g(k;) — 0. (g(h) < oo is essential here.) 0
3. APPLICATIONS AND EXAMPLES
DEFINITION 9: For 0 #M C PCRY, T: P > R:
TM(k) := Inf{T(h): k < h € M} for k € R, with inf @ = oo.

LEMMA 11. HOeM =M+ M CR", T: M - R with

(24) T(h)<T(k)+ () ifh < k+1andh,k,le M,

then TM: R® — R is well defined, = T on M and satisfies (24) with h,k,l € ﬁx;
(TM)M — TM o5 R”. (Here + cannot be replaced by +.).
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A, PROPER RIEMANN INTEGRALS.

# | Q means R is a semiring of sets from X, u: Q — [0, co)

(25) is additive on Q, Bg := step functions S(2, R),

I, := / ..dp on Bg {10, p.10-13].

With ¢ = I := (I, ,,)Bn of Definition 9, Aumann [1, p.447—448] respectively Lemma 11
give

(26) I; Bql, of (10) holds, I, is Bg-additive and positive-homogeneous;

(27) Rl(4, R):= (Bqa)™, I,: R}(u, R) — R (abstract proper
Riemann-p-integral) are well defined, I, := (7, ,,)I; of Theorem 1.
X=R, Q= {a,b): —0 < a <b< oo}, p([a, b)) = b — a give the classical
proper Riemann integrable functions, as for R™ [10, p.216].

B, ABSTRACT RIEMANN-p-INTEGRATION. With (25), I | B = I, | Bq and the Bg-
additive integral metric ¢ = I, of A4, for

(28) Ri(p, R) := BB, / ..dp = (1,)%"

all results of Sections 1-2 are applicable, Bq is Stonean Coo (I, Bq) holds, Rl(g, R) C
Ri(p, R) NRX = Ry(, R) of [10, p.70-144] = L(X, Q, p, R) of Dunford-Schwartz
(8, p-112]if X € Q. k; — k (g, B) & k; — k p-locally, Mn(q, B) = MR[u, R] (11,
Lemma 9], [10, p.142]. Our convergence theorems are still generalisations of those for
Ry(p, R), Corollary XIV is new even then.

C, LooMIs COMPLETIONS. Given I | B with (9), and ¢:=1"/ +R” one has:

R, :=R,(I|B):=B%, J:=I%:R, —»R, where I™ := IP of
Definition 9 and (I ') p of Definition 5, are B-additive.

R,(B/I) D R! = two-sided completion R of Loomis {13, p.170], R; = one-sided
completion U of Loomis [13, p.178], = I-integrable functions of [14] = closure of B in

R with respect to the distance d(k, I) := (I7)g(|k —I|]). A and B are special cases.
This extension process I | B — J | Ry(I | B) is by [14, p.115-119] iteration complete,

that is B;(I | B) = R, (J | E) with B := R,(I | B)NRX.
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D, FINITELY-ADDITIVE DANIELL EXTENSION. For I | B with (9) it is introduced in
[3], for k € -]ﬁx,

(30) It (k) :=sup{I(h): h <k, h € B},
Bt :={keR": —oco<I*(k), k=sup{h:k3>he B}},
By :={f € BT: I(f +¢) < I*(f) + I'*(g) for g € B*},
B C By):={f € B4: I'(f) <o} C By C B,
(31) I:= (I"‘)B+ (Definition 9), a B-additive integral metric ¢
on +ﬁx, with ¢BI,
(32) B := B? = summable functions By of [3], I =T on B;

the convergence theorems of Section 1 are those of [11]; by [14, Theorem 6.4] one has
(33)  R.(I|B)CB, Ri(I|B)CB+/{fe€R(I|B): R ~I(f])=0}

In the classical case Ry = L' = L; = B by (43)—(44), but in general Section 2 is
not applicable ({11, Example 2}, R; ¢ B, BC R;.

E, LOCALISATION OF THE DANIELL-ANALOGUE.
(34) L:=LU|B):=B% J:=I"%:[ R, g¢=I|+R"

with B, I, T of D allow an application of all results of Sections 1-2; (18) and T < I2
imply

(35) BCL, R.CRi(I|B)cC L, with coinciding integrals,

all C are strict {11, Exercise 2.3], and we have a generalisation of [3]. With Cu(B, I)
of [11]onecanshow 1€ B=>L=B;1€ L= L =_E+N73; with Coo: B(4) C Ry &
R, C B & R, = L. See also (43)-(44).

One has always the iteration closures of Theorem 1 and Corollary XII, where
B:=L(I/B)NRX and T:= J/B.

Additional properties of L(B/I) will be treated elsewhere, see also [7].

F, LP-SPACES. For ¢ := R* - +R, 0 < p real < oo, with kP(t) := (k(t))*, 0P := 0,
oo? := oo

(36) gp(k) := (¢(k?)) P ifp>1, :=qk?)if0O<p<1, ke+R*
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LEMMA 12. If q: R = 4R is an integral metric with ¢(2k) = 2¢(k), 0 < p <
o0, then g, is also an integral metric on +ﬁx , positive-homogeneous if p > 1.

PROOF: 2¢(k) < g(2k) implies g(tk) = tg(k), 0 <t < o0; |s+1° < 8P + 17
if p<1. If p> 1, g satisfies Minkowski’s inequality for finitely-valued k,! by
Bourbaki [5, p.12); if k,I € +R" with finite g, (gp(k + 1))* < g(2P(k® + IP)) < oo
and mgy(koo) = gp(mke) < gp(k) < 00, gp(keo) = 0 (see Corollary II); therefore
gp(k+1) < q?((k +1).)+0< gp(ke + le) < gp(ke) + qP(l=) < gp(k) + g(1). I

So for integral norms := positive-homogeneous integral metrics ¢, Section 1-2 (and
Hélder) hold for B% and B%'B | especially for
(37)

Ry(I|B):=B", r=((I®)g),, Li(I|B):=B", s:=(Ip), 0<p<oco.

If ¢ is a B-additive integral norm, 0 < p < oo, (+B)? = +B, then g, is B-
semiadditive (for example B = Bq or Co(X, R)); if additionally ¢(h — hAn) — 0 and
g(hA1/R) > 0, n — oo, h € +B, then Mn(qq, B) = Mn(q, B), kj — k (gp, B) &
ki — k (¢, B),

(38) B = {f € Mn(q, B): gp(|f]) < oo}
ExampLe: || ||, = (|| [l;), isa +R* -semiadditive integral metric, 0 < p < oo,
[lkll; = 3 k(z). One can also show that go 8, is an integral metric on +R® for
z€EX
0<p<ooif gis, Bp(k) := (k?/(1 + kP))*/?, though B is not homogeneous.
G, SCHAFKE COMPLETIONS. If one has ¢B0 and ¢ o-subadditive (k, k, € +7ﬁx,
E< Y kn = q(k) < iq(kn) starke Integralnorm in [16]), then B? of Theorem 1 has
1 1
by Schafke [16, 19] additional properties: For P C X, ¢(1P) = 0 & g(oP) =0 &
[ ]
there is k € Ng with P C {z € X: k(z) # 0} & P g-nullsets; P, g-nullsets = |J P,
1

g-nullset; (BY, q) is complete (Stone’s axiom is not needed); gp is also o-subadditive,
with Corollary II one gets

(39) BB =B 4+ Ny, :={g+1l:9g€ B, 1€ Ny}

g is called weakly B-semiadditive [16] if h,,h € +B with ) h, < h and ¢(h) < o
1

implies gq(hn) — 0.

LEMMA 13. If ¢BO holds, ¢ # oo on +B, q is o-subaditive and weakly B-
semiadditive, fn € Mn(q, B), k € R® and fn — k g¢p-almost everywhere, then
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k € Mn(q, B) if additionally the fg € B8 and k — f, — 0 gp-almost everywhere,
then f, — k (g, B).

PRrooF: With Lemma 4, Corollary II and the above one can assume 0 < f, and
fn — k,respectively k—f, - 0on X.f h€ +B, l,:= f,Ah, then p, :=h—VTI; €
B? and h—kAh = V{°p+n € B? by Hilfssatz 1.4.4 of Schafke [16], so k € Mn(g, B).
For the second assertion, 8, := |k — f,|Ah € B? by Lemma 4 and Theorem 2, 8, — 0;
[16], Satz 1.4.6 gives g(f.) — 0. (See also Liubicich [12]). 1]

If only f, — k gp-almost everywhere, but |f.| < go € B8 for n € N, or if
90 € fn < fat1, supgB(fn — go) < oo and g is B-semiadditive, one gets immediately
k— fn — 0 gp-almost everywhere, then the usual L'-convergence theorems follow from
those of Sections 1 and 2. (For nets they and Lemma 17 are false.)

H, DANIELL INTEGRALS. If I | B with (9) is o-continuous, that is I(h,) — 0 whenever
hn € +B hy 2 hny1 — 0 pointwise on X . Then Aumann (1, p.448-449]

(40) I°(k) == inf{il(hﬂ): k< ih,., hn € +B}, ke +RY,
1 1

defined a o-subadditive B-additive integral norm with g(k,) — g(k) for any k,,k €

+R” with k. Tk, ¢g=17 or I, (= upper S-norm of Bichteler [2]); so all results of
Sections 1-3 and G hold for Ig := (I7)g)

(41) L':=B', L,:=B'B, I:=Ip:=I'3, |f|,:=Io(Ifll)

Ip | L' = usual Daniell extension of I | B, [6, 1, 15, 9).
As an analogue to B = L' N B + Bn of [11] we can only show

po-additive on §-ring Q= Ly =R, = L' =BNR; + Ly n

42 — —
(42) >I'CB+Lin=>L=B+Ly=>L=L'NnL+Ly,

with My := {null functions of M}. So at least for measure spaces (X, Q, ) and
I|B=1,|B, one has

(43) LI'cL=BnLl'+Ly=LNL'+Ln,

even then L; & B is possible ([11]).
As an analogue to the first = of (40) one has L; = R; for o-continuous I | B

satisfying - hn € B whenever h, € +B with S ha < h € B.
1 1
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I, BOURBAKI INTEGRALS. If I | B with (9) is 7-continuous (I(h;) — 0 if (h;) net
from B with h; | 0) then B+ = B,, I+ =T on B*, I" := (I*)?" =T < I° defines
a B-additive integral norm on +ﬁx with I"BI [3,11)],s0 L™ := BT and L, := Bs
are with their integrals well defined, L™ = Bourbaki-integrable functions (Pfeffer [15],
Floret [9, p.338]; see also || ||, of Schifke [16]) one has

(44) I'!cL"=B=I'+ByCL,=L=L'+Lny=0L;+ Lx.

ExaMPLES: B = Co(X, R), X Hausdorff, or I, | Ba, p = Lebesgue measure,
Q) = intervals C X open C R™ (here L! = L by [11]); even then the integral is not
7-continuous on L'. There are I, | Bq with 1X € By and all “ C” in (44) are strict.
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