No CrossRef data available.
Article contents
The limit-point and limit-circle classification of the Sturm-Liouville operator (py′)′ + qy
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

- Type
- Abstracts of Australasian Ph.D. theses
- Information
- Copyright
- Copyright © Australian Mathematical Society 1974
References
[1]Brinck, Inge, “Self-adjointness and spectra of Stunn-Liouville operators”, Math. Sound. 7 (1959), 219–239.Google Scholar
[2]Dunford, Nelson and Schwartz, Jacob T., Linear operators, Part II (Interscience [John Wiley & Sons], New York, London, 1963).Google Scholar
[3]Hartman, Philip, “The number of L2-solutions of x″ + q(t)x = 0 ″”, Amer. J. Math. 73 (1951), 635–645.CrossRefGoogle Scholar
[4]Исмагилов, P.C. [R.S. Ismagilov], “Обусловиях самосопряженности дифференциалъных операторов высшвго порядка” [Conditions for self-adjointness of differential equations of higher order], Dokl. Akad. Nauk SSSR 142 (1962), 1239–1242.Google ScholarPubMed
[5]Sears, D.B., “Hote on the uniqueness of the Green's functions associated with certain differential equations”, Canad. J. Math. 2 (1950), 314–325.CrossRefGoogle Scholar