No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
In this paper we determine the left ideals in the near-ring Aff(V) of all affine transformations of a vector space V. It is shown that there is a Galois correspondence between the filters of affine subspaces of V and those left ideals of Aff(V) which are not left invariant. In particular, the not left invariant finitely generated left ideals of Aff(V) are precisely the annihilators of the affine subspaces of V. A similar correspondence exists between the filters of linear subspaces of V and the left invariant left ideals of Aff (V). If V is finite-dimensional, then all left ideals of Aff(V) are finitely generated.