Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T02:44:50.891Z Has data issue: false hasContentIssue false

Lefschetz numbers and unitary groups

Published online by Cambridge University Press:  17 April 2009

K.F. Lai
Affiliation:
Department of Pure Mathematics, University of Sydney, New South Wales 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a formula for the Euler-Poincare characteristic of the fixed point set of the Cartan involution on the set of integral equivalence classes of integral unimodular hermitian forms, in terms of a product of special values of Riemann zeta functions and Dirichlet L-functions. This is done via reduction by Galois cohomology to a volume computation using the Tamagawa measure on the unitary groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Bourbaki, N., Groups et algebrès de Lie (Hermann, Paris, 1972).Google Scholar
[2]Carter, R.W., Simple groups of Lie type (Wiley, New York, 1972).Google Scholar
[3]Harder, G., ‘A Gauss-Bonnet formula for discrete arithmetically defined groups’, Ann. Sci. Écale Norm. Sup. 4 (1971), 409455.CrossRefGoogle Scholar
[4]Helgason, S., Differential geometry, Lie groups and symmetric spaces (Academic Press, New York, 1978).Google Scholar
[5]Hirzebruch, F., ‘Automorphe Formen und der Sat von Riemann Roch’, in Symposium International Topology and Algebra, pp. 129144 (Univ. de Mexico, 1958).Google Scholar
[6]Lee, R., ‘Computation of Wall groups’, Topology 10 (1971), 149176.CrossRefGoogle Scholar
[7]Rohlfs, J., ‘Arithmetisch definierte Gruppen mit Galoisoperation’, Invent. Math. 48 (1978), 185205.CrossRefGoogle Scholar
[8]Rohlfs, J., ‘Lefschetz number of an involution on the space of classes of positive definite quadratic forms’, Comment. Math. Helv. 56 (1981), 272296.CrossRefGoogle Scholar
[9]Weil, A., Adeles and algebraic groups (Birkhauser, Boston, 1982).CrossRefGoogle Scholar
[10]Zeltinger, H., Spitzenanzahlen und Volumina Picardscher Modulvanetaten 136 (Bonner Math. Schriften, Bonn, 1981).Google Scholar