Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T07:39:02.355Z Has data issue: false hasContentIssue false

INFLUENCE FUNCTIONS FOR DIMENSION REDUCTION METHODS

Published online by Cambridge University Press:  30 October 2020

JODIE ANN SMITH*
Affiliation:
School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC3086, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

Thesis submitted to La Trobe University in September 2019; degree approved on 25 February 2020; principal supervisor Luke Prendergast, co-supervisor Robert Staudte.

References

Bellman, R. E., Adaptive Control Processes (Princeton University Press, Princeton, NJ, 1961).CrossRefGoogle Scholar
Cook, R. D., Regression Graphics: Ideas for Studying Regressions through Graphics (John Wiley, New York, 1998).CrossRefGoogle Scholar
Fisher, R. A., ‘The use of multiple measurements in taxonomic problems’, Ann. Eugen. 7(2) (1936), 179188.CrossRefGoogle Scholar
Friedman, J. H., ‘An overview of computational learning and function approximation’, From Statistics to Neural Networks. Theory and Pattern Recognition Applications (eds. Cherkassky, V., Friedman, J. H. and Wechsler, H.) (Springer, Berlin, 1994), 161.Google Scholar
Gather, U. and Becker, C., ‘The curse of dimensionality—a challenge for mathematical statistics’, Jahresber. Dtsch. Math.-Ver. 103(1) (2001), 1936.Google Scholar
Hampel, F. R., ‘The influence curve and its role in robust estimation’, J. Amer. Statist. Assoc. 69 (1974), 383393.CrossRefGoogle Scholar
Hilbert, M. and López, P., ‘The world’s technological capacity to store, communicate, and compute information’, Science 332 (2011), 6065.CrossRefGoogle ScholarPubMed
Li, K. C., ‘Sliced inverse regression for dimension reduction’, J. Amer. Statist. Assoc. 86 (1991), 316342. With comments and a rejoinder by the author.CrossRefGoogle Scholar
Li, K. C., ‘On principal Hessian directions for data visualization and dimension reduction: another application of Stein’s lemma’, J. Amer. Statist. Assoc. 87 (1992), 10251039.CrossRefGoogle Scholar
Prendergast, L. A. and Smith, J. A., ‘Sensitivity of principal Hessian direction analysis’, Electron. J. Stat. 1 (2007), 253267.CrossRefGoogle Scholar
Prendergast, L. A. and Smith, J. A., ‘Influence functions for dimension reduction methods: an example influence study of principal Hessian direction analysis’, Scand. J. Stat. 37(4) (2009), 588611.CrossRefGoogle Scholar
Prendergast, L. A. and Smith, J. A., ‘Influence functions for linear discriminant analysis: sensitivity analysis and efficient influence diagnostics’, Preprint, 2019, arXiv:1909.13479.Google Scholar