Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:12:03.455Z Has data issue: false hasContentIssue false

The Hutchinson-Barnsley theory for infinite iterated function systems

Published online by Cambridge University Press:  17 April 2009

Gertruda Gwóźdź-Lukawska
Affiliation:
Centre of Mathematics and Physics, Technical University of Lódź, al. Politechniki 11, 90–924 Lódź, Poland, e-mail: [email protected]
Jacek Jachymski
Affiliation:
Institute of Mathematics Technical University of Lódź, Wólczańska 215, 93–005 Lódź, Poland, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that some results of the Hutchinson-Barnsley theory for finite iterated function systems can be carried over to the infinite case. Namely, if {Fi : i ∈ ℕ} is a family of Matkowski's contractions on a complete metric space (X, d) such that (Fix0)i∈N is bounded for some x0X, then there exists a non-empty bounded and separable set K which is invariant with respect to this family, that is, . Moreover, given σ ∈ ℕ and xX, the limit exists and does not depend on x. We also study separately the case in which (X, d) is Menger convex or compact. Finally, we answer a question posed by Máté concerning a finite iterated function system {F1,…, FN} with the property that each of Fi has a contractive fixed point.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Andres, J. and Fišer, J., ‘Metric and topological multivalued fractals’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), 12771289.CrossRefGoogle Scholar
[2]Andres, J., Fišer, J., Gabor, G. and Leśniak, K., ‘Multivalued fractals,’ Chaos Solitons Fractals 24 (2005), 665700.CrossRefGoogle Scholar
[3]Andres, J. and Górniewicz, L., ‘On the Banach contraction principle for multivalued mappings’, in Approximation, optimization and mathematical economics (Pointe-à Pitre) (Physica, Heidelberg, 2001), pp. 123.Google Scholar
[4]Barnsley, M.F., Fractals everywhere (Academic Press, New York, 1988).Google Scholar
[5]Blumenthal, L.M., Theory and applications of distance geometry (Clarendon Press, Oxford, 1953).Google Scholar
[6]Browder, F.E., ‘On the convergence of successive approximations for nonlinear functional equation’, Indag. Math. 30 (1968), 2735.CrossRefGoogle Scholar
[7]Edelstein, M., ‘On fixed and periodic points under contractive mappings’, J. London Math. Soc. 37 (1962), 7479.CrossRefGoogle Scholar
[8]Engelking, R., General topology (Polish Scientific Publishers, Warszawa, 1977).Google Scholar
[9]Granas, A. and Dugundji, J., Fixed point theory, Springer Monographs in Mathematics (Springer-Verlag, New York, 2003).CrossRefGoogle Scholar
[10]Hille, E. and Phillips, R.S., Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (American Mathematical Society, Providence, R.I., 1957).Google Scholar
[11]Hutchinson, J. E., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[12]Jachymski, J., ‘Equivalence of some contractivity properties over metrical structures’, Proc. Amer. Math. Soc. 125 (1997), 23272335.CrossRefGoogle Scholar
[13]Jachymski, J., ‘An extension of A. Ostrovski's theorem on the round-off stability of iterations’, Aequationes Math. 53 (1997), 242253.CrossRefGoogle Scholar
[14]Jachymski, J., Gajek, L. and Pokarowski, P., ‘The Tarski-Kantorovitch principle and the theory of iterated function systems’, Bull. Austral. Math. Soc. 61 (2000), 247261.CrossRefGoogle Scholar
[15]Máté, L., ‘The Hutchinson-Barnsley theory for certain non-contraction mappings’, Period. Math. Hungar. 27 (1993), 2133.CrossRefGoogle Scholar
[16]Máté, L., ‘On infinite composition of affine mappings’, Fund. Math. 159 (1999), 8590.CrossRefGoogle Scholar
[17]Matkowski, J., Integrable solutions of functional equations 127, (Dissertationes Math.) (Rozprawy Mat., Warszawa, 1975).Google Scholar
[18]Matkowski, J., ‘Fixed point theorem for mappings with a contractive iterate at a point’, Proc. Amer. Math. Soc. 62 (1977), 344348.CrossRefGoogle Scholar
[19]Matkowski, J., ‘Nonlinear contractions in metrically convex space,’ Publ. Math. Debrecen 45 (1993), 103114.CrossRefGoogle Scholar