Published online by Cambridge University Press: 07 March 2018
Let $G$ be a group and $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes. A subgroup $A$ of $G$ is $\unicode[STIX]{x1D70E}$-subnormal in $G$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{m}=G$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is a finite $\unicode[STIX]{x1D70E}_{j}$-group for some $j=j(i)$ for $i=1,\ldots ,m$, and it is modular in $G$ if $\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ when $X\leq Z\leq G$ and $\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ when $Y\leq G$ and $A\leq Z\leq G$. The group $G$ is called $\unicode[STIX]{x1D70E}$-soluble if every chief factor $H/K$ of $G$ is a finite $\unicode[STIX]{x1D70E}_{i}$-group for some $i=i(H/K)$. In this paper, we describe finite $\unicode[STIX]{x1D70E}$-soluble groups in which every $\unicode[STIX]{x1D70E}$-subnormal subgroup is modular.
This research is supported by the NNSF of China (grant no. 11401264) and TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).