Published online by Cambridge University Press: 18 March 2013
Let $(R, \mathfrak{m})$ be a Cohen–Macaulay complete local ring. We will apply an inductive argument to show that for every nonprojective locally projective maximal Cohen–Macaulay object $ \mathcal{X} $ of the morphism category of $R$ with local endomorphism ring, there exists an almost split sequence ending in $ \mathcal{X} $. Regular sequences are exploited to reduce the Krull dimension of $R$ on which the inductive argument is established. Moreover, the Auslander–Reiten translate of certain objects is described.