No CrossRef data available.
Article contents
Epimorphisms and semigroup varieties
Published online by Cambridge University Press: 17 April 2009
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Abstracts of Australasian PhD Theses
- Information
- Copyright
- Copyright © Australian Mathematical Society 1984
References
[1]Higgins, Peter M., “Epis are onto for generalized inverse semigroups”, Semigroup Forum 23 (1981), 255–259.CrossRefGoogle Scholar
[2]Higgins, Peter M., “The determination of all absolutely closed varieties of semigroups”, Proc. Amer. Math. Soc. 87 (1983), 419–421CrossRefGoogle Scholar
[3]Higgins, Peter M., “The commutative varieties of semigroups for which epis are onto”, Proc. Edinburgh Math. Soc. Sect. A 94 (1983), 1–7.CrossRefGoogle Scholar
[4]Higgins, Peter M., “A semigroup with an epimorphically embedded subband”, Bull. Austral. Math. Soc. 27 (1983), 231–242.CrossRefGoogle Scholar
[5]Higgins, Peter M., “Saturated and epimorphically closed varieties of semigroups”, J. Austral. Math. Soc. Ser. A 36 (1984), 153–175.CrossRefGoogle Scholar
[6]Higgins, Peter M., “Epimorphisms, permutation identities and finite semigroups”, Semigroup Forum (to appear).Google Scholar
[7]Higgins, Peter M., “The permutation identities which ensure that a semigroup variety is finitely based”, submitted.Google Scholar
You have
Access