Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:45:34.005Z Has data issue: false hasContentIssue false

Eigenvalue estimates and isoperimetric inequalities for cone-manifolds

Published online by Cambridge University Press:  17 April 2009

Craig Hodgson
Affiliation:
Department of Mathematics, University of Melbourne, Parkville Vic 3052, Australia, [email protected]
Johan Tysk
Affiliation:
Department of Mathematics, Uppsala University Thunbergsvagen, 3 S-75238 Uppsala, Sweden, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper studies eigenvalue bounds and isoperimetric inequalities for Rieman-nian spaces with cone type singularities along a codimension-2 subcomplex. These “cone-manifolds” include orientable orbifolds, and singular geometric structures on 3-manifolds studied by W. Thurston and others.

We first give a precise definition of “cone-manifold” and prove some basic results on the geometry of these spaces. We then generalise results of S.-Y. Cheng on upper bounds of eigenvalues of the Laplacian for disks in manifolds with Ricci curvature bounded from below to cone-manifolds, and characterise the case of equality in these estimates.

We also establish a version of the Lévy-Gromov isoperimetric inequality for cone-manifolds. This is used to find lower bounds for eigenvalues of domains in cone-manifolds and to establish the Lichnerowicz inequality for cone-manifolds. These results enable us to characterise cone-manifolds with Ricci curvature bounded from below of maximal diameter.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Almgren, F., ‘Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints’, Mem. Amer. Math. Soc. 165 (1976).Google Scholar
[2]Bishop, R. and Crittenden, R., Geometry of manifolds (Academic Press, New York, 1964).Google Scholar
[3]Bérard, P. and Meyer, D., ‘Inegalités isopérimetrique et applications’, Ann. Set. École. Norm. Sup. Paris 15 (1982), 513542.CrossRefGoogle Scholar
[4]Cheng, S.-Y., ‘Eigenvalue comparison theorems and its geometric applications’, Math. Z. 143 (1975), 289297.CrossRefGoogle Scholar
[5]Cheng, S.-Y. and Li, P., ‘Heat kernel estimates and lower bounds of eigenvalues’, Comment. Math. Helv. 56 (1981), 327338.CrossRefGoogle Scholar
[6]Cheng, S.-Y. and Yau, S.-T., ‘Differential equations on Riemannian manifolds and their geometric applications’, Comm. Pure Appl Math 28 (1975), 333354.CrossRefGoogle Scholar
[7]Cheeger, J., ‘A vanishing theorem for piecewise constant curvature spaces’, in Lecture Notes in Math. 1201 (Springer-Verlag, Berlin, Heidelberg, New York, 1986), pp. 3340,.Google Scholar
[8]Chavel, I., Eigenvalues in Riemannian geometry (Academic Press, New York, 1984).Google Scholar
[9]Faber, C., ‘Beweis, dass unter alien homogenen Membrane von gleiche Fläche und gleicher Spannung die kreisförmige die tiefsten Grundton gibt’, Sitzungsber.-Bayer Akad. Wiss., Math.-Phys. Munich (1923), 169172.Google Scholar
[10]Gromov, M., ‘Paul Levy's isoperimetric inequality’, (preprint).Google Scholar
[11]Gromov, M., Structures métriques sur lea variétés riemanniennes (Cedic/Fernand Nathan, Paris, 1981).Google Scholar
[12]Heintze, E. and Karcher, R., ‘A general comparison theorem with applications to volume estimates for submanifolds’, Ann. Sci. École. Norm. Super. Paris 11 (1978), 451470.CrossRefGoogle Scholar
[13]Krahn, E., ‘Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises’, Math. Ann. 94 (1925), 97100.CrossRefGoogle Scholar
[14]Lichnerowicz, A., Geometric des Groupes des Transformations (Dunod, Paris, 1958).Google Scholar
[15]Li, P. and Yau, S.-T., ‘Estimates of eigenvalues of a compact Riemannian manifold’, in Proc. Symp. Pure Math. 36 (Amer. Math. Soc., Providence, Rhode Island, 1980), pp. 205240.Google Scholar
[16]Obata, M., ‘Certain conditions for a Riemannian manifold to be isometric with a sphere’, J. Math. Soc. Japan 14 (1962), 333340.CrossRefGoogle Scholar
[17]Reed, M. and Simon, B., Methods of modern mathematical physics II (Academic Press, 1975).Google Scholar
[18]Thurston, W., The geometry and topology of 3-manifolds, Lecture Notes (Princeton University Math. Dept., 1978).Google Scholar
[19]Thurston, W., ‘Geometric structures on 3-manifolds with symmetry’, (preprint, Princeton University, 1982).Google Scholar