Published online by Cambridge University Press: 18 January 2013
We study the space of irreducible representations of a crossed product ${C}^{\ast } $-algebra ${\mathop{A\rtimes }\nolimits}_{\sigma } G$, where $G$ is a finite group. We construct a space $\widetilde {\Gamma } $ which consists of pairs of irreducible representations of $A$ and irreducible projective representations of subgroups of $G$. We show that there is a natural action of $G$ on $\widetilde {\Gamma } $ and that the orbit space $G\setminus \widetilde {\Gamma } $ corresponds bijectively to the dual of ${\mathop{A\rtimes }\nolimits}_{\sigma } G$.