No CrossRef data available.
Article contents
DISTRIBUTION OF INTEGERS WITH PRESCRIBED STRUCTURE AND APPLICATIONS
Part of:
Diophantine approximation, transcendental number theory
Exponential sums and character sums
Additive number theory; partitions
Multiplicative number theory
Published online by Cambridge University Press: 19 October 2020
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
MSC classification
- Type
- Abstracts of Australasian PhD Theses
- Information
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
Footnotes
Thesis submitted to the University of New South Wales in February 2020; degree approved on 10 June 2020; supervisors Igor Shparlinski and Liangyi Zhao.
References
Balog, A. and Pomerance, C., ‘Thedistribution of smooth numbers in arithmetic progressions’, Proc. Amer. Math. Soc. 115(1) (1992), 33–43.CrossRefGoogle Scholar
de la Bretèche, R. and Munsch, M., ‘Minimizing GCD sums and applications to non-vanishing of theta functions and to Burgess’ inequality’, Preprint, 2019, arXiv:1812.03788.Google Scholar
de la Bretèche, R., Munsch, M. and Tenenbaum, G., ‘Small Gál sums and applications’, J. London Math. Soc., to appear.Google Scholar
Erdős, P., Odlyzko, A. M. and Sárközy, A., ‘On the residues of products of prime numbers’, Period. Math. Hungar. 18(3) (1987), 229–239.10.1007/BF01848086CrossRefGoogle Scholar
Fouvry, E. and Shparlinski, I. E., ‘On a ternary quadratic form over primes’, Acta Arith. 150(3) (2011), 285–314.CrossRefGoogle Scholar
Harman, G., Prime-Detecting Sieves, London Mathematical Society Monograph Series, 33 (Princeton University Press, Princeton, NJ, 2007).Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Kerr, B., Shparlinski, I. E. and Yau, K. H., ‘A refinement of the Burgess bound for character sums, Michigan Math. J. 69(2) (2020), 227–240.10.1307/mmj/1573700737CrossRefGoogle Scholar
Munsch, M., Shparlinski, I. E. and Yau, K. H., ‘Smooth squarefree and squarefull integers in arithmetic progressions’, Mathematika 66(1) (2020), 56–70.CrossRefGoogle Scholar
Ramaré, O., Arithmetical Aspects of the Large Sieve Inequality, Harish-Chandra Research Institute Lecture Notes, 1 (Hindustan Book Agency, New Delhi, 2009).10.1007/978-93-86279-40-8CrossRefGoogle Scholar
Yau, K. H., ‘Distribution of
$\alpha n+\beta$
modulo
$1$
over integers free from large and small primes’, Acta Arith. 189(1) (2019), 95–107.CrossRefGoogle Scholar
You have
Access