Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:51:40.519Z Has data issue: false hasContentIssue false

DISTRIBUTION OF INTEGERS WITH PRESCRIBED STRUCTURE AND APPLICATIONS

Published online by Cambridge University Press:  19 October 2020

KAM HUNG YAU*
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Kensington, New South Wales, 2052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Footnotes

Thesis submitted to the University of New South Wales in February 2020; degree approved on 10 June 2020; supervisors Igor Shparlinski and Liangyi Zhao.

References

Balog, A. and Pomerance, C., ‘Thedistribution of smooth numbers in arithmetic progressions’, Proc. Amer. Math. Soc. 115(1) (1992), 3343.CrossRefGoogle Scholar
de la Bretèche, R. and Munsch, M., ‘Minimizing GCD sums and applications to non-vanishing of theta functions and to Burgess’ inequality’, Preprint, 2019, arXiv:1812.03788.Google Scholar
de la Bretèche, R., Munsch, M. and Tenenbaum, G., ‘Small Gál sums and applications’, J. London Math. Soc., to appear.Google Scholar
Erdős, P., Odlyzko, A. M. and Sárközy, A., ‘On the residues of products of prime numbers’, Period. Math. Hungar. 18(3) (1987), 229239.10.1007/BF01848086CrossRefGoogle Scholar
Fouvry, E. and Shparlinski, I. E., ‘On a ternary quadratic form over primes’, Acta Arith. 150(3) (2011), 285314.CrossRefGoogle Scholar
Harman, G., Prime-Detecting Sieves, London Mathematical Society Monograph Series, 33 (Princeton University Press, Princeton, NJ, 2007).Google Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Kerr, B., Shparlinski, I. E. and Yau, K. H., ‘A refinement of the Burgess bound for character sums, Michigan Math. J. 69(2) (2020), 227240.10.1307/mmj/1573700737CrossRefGoogle Scholar
Munsch, M., Shparlinski, I. E. and Yau, K. H., ‘Smooth squarefree and squarefull integers in arithmetic progressions’, Mathematika 66(1) (2020), 5670.CrossRefGoogle Scholar
Ramaré, O., Arithmetical Aspects of the Large Sieve Inequality, Harish-Chandra Research Institute Lecture Notes, 1 (Hindustan Book Agency, New Delhi, 2009).10.1007/978-93-86279-40-8CrossRefGoogle Scholar
Yau, K. H., ‘Distribution of $\alpha n+\beta$ modulo $1$ over integers free from large and small primes’, Acta Arith. 189(1) (2019), 95107.CrossRefGoogle Scholar