Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:58:37.405Z Has data issue: false hasContentIssue false

Approximate polyhedra, density and discrete maps

Published online by Cambridge University Press:  17 April 2009

Antonio Giraldo
Affiliation:
Departamento de Matematica Aplicada, Universidad Politecnica, Boadilla del Monte, 28660 Madrid, Spain, e-mail: [email protected]
Jose M.R. Sanjurjo
Affiliation:
Departamento de Geometria y Topologia, Universidad Complutense, 28040 Madrid, Spain, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some extension properties of maps defined on dense subsets are studied for approximate polyhedra. The latter are characterised as approximate extensors for finite maps with small oscillation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Bogatyi, S., ‘Approximative and fundamental retracts’, Math. USSR-Sb. 22 (1974), 91103.CrossRefGoogle Scholar
[2]Borsuk, K., ‘On some metrizations of the hyperspace of compact sets’, Fund. Math. 41 (1954), 168202.CrossRefGoogle Scholar
[3]Borsuk, K., Theory of retracts, Monografie Matematyczne 44 (Polish Scientific Publishers, Warszawa, 1967).Google Scholar
[4]Borsuk, K., ‘Concerning homotopy properties of compacta’, Fund. Math. 62 (1968), 223254.CrossRefGoogle Scholar
[5]Clapp, M.H., ‘On a generalization of absolute neighborhood retracts’, Fund. Math. 70 (1971), 117130.CrossRefGoogle Scholar
[6]Dydak, J. and Segal, J., ‘Approximate polyhedra and shape theory’, Topology Proc. 6 (1981), 279286.Google Scholar
[7]Giraldo, A. and Sanjurjo, J.M.R., ‘Density and shape’, (preprint).Google Scholar
[8]Granas, A., ‘Fixed point theorems for the approximative ANRs’, Bull. Acad. Polon. Sci., Ser. sci. math., astr. et phys. 16 (1968), 1519.Google Scholar
[9]Hu, S., Theory of retracts (Wayne State University Press, Detroit, 1967).Google Scholar
[10]Mardeŝić, S., ‘Approximate polyhedra, resolutions of maps and shape fibrations’, Fund. Math. 114(1981), 5378.CrossRefGoogle Scholar
[11]Mardešić, S. and Segal, J., Shape theory (North Holland, Amsterdam, 1982).Google Scholar
[12]Noguchi, H., ‘A generalization of absolute neighborhood retracts’, Kodai Math. Seminar reports 1 (1953), 2022.Google Scholar
[13]Sanjurjo, J.M.R., ‘An intrinsic description of shape’, Trans. Amer. Math. Soc. 329 (1992), 625636.CrossRefGoogle Scholar
[14]Sanjurjo, J.M.R., ‘Multihomotopy, Čech spaces of loops and shape groups’, Proc. London Math. Soc. 69 (1994), 330344.CrossRefGoogle Scholar
[15]Van Mill, J., Infinite-dimensional topology (North Holland, Amsterdam, 1989).Google Scholar
[16]West, J.E., ‘Problems in infinite-dimensional topology’, in Open problems in topology, (Van Mill, J. and Reed, G.M., Editors) (North Holland, Amsterdam, 1990), pp. 523597.Google Scholar