No CrossRef data available.
Published online by Cambridge University Press: 08 January 2020
Let $p$ be a prime, $G$ a solvable group and $P$ a Sylow $p$-subgroup of $G$. We prove that $P$ is normal in $G$ if and only if $\unicode[STIX]{x1D711}(1)_{p}^{2}$ divides $|G:\ker (\unicode[STIX]{x1D711})|_{p}$ for all monomial monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.