Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T05:20:55.410Z Has data issue: false hasContentIssue false

Independence Property and Hyperbolic Groups

Published online by Cambridge University Press:  15 January 2014

Eric Jaligot
Affiliation:
Université de Lyon, CNRS and Université Lyon 1, Institut Camille Jordan CNRS UMR 5208 43, Boulevard Du 11 Novembre 1918, F-69622 Villeurbanne Cedex, FranceE-mail: [email protected]
Alexey Muranov
Affiliation:
Université de Lyon, Université Lyon 1, Institut Camille Jordan CNRS UMR 5208 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, FranceE-mail: [email protected], E-mail: [email protected]
Azadeh Neman
Affiliation:
Université de Lyon, Université Lyon 1, Institut Camille Jordan CNRS UMR 5208 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, FranceE-mail: [email protected], E-mail: [email protected]

Abstract

In continuation of [JOH04, OH07], we prove that existentially closed CSA-groups have the independence property. This is done by showing that there exist words having the independence property relative to the class of torsion-free hyperbolic groups.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Bro94] Brown, K. S., Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer, New York, 1994, corrected reprint of the 1982 original.Google Scholar
[CCH81] Chiswell, I.M., Collins, D. J., and Huebschmann, J., Aspherical group presentations, Mathematische Zeitschrift, vol. 178 (1981), no. 1, pp. 136.Google Scholar
[CDP90] Coornaert, M., Delzant, T., and Papadopoulos, A., Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer, Berlin, 1990, Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], with an English summary.Google Scholar
[GdlH90] Ghys, É. and de la Harpe, P. (editors), Sur les groupes hyperboliques d'faprès Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA, 1990, papers from the Swiss seminar on Hyperbolic Groups held in Bern, 1988.CrossRefGoogle Scholar
[Gro87] Gromov, M., Hyperbolic groups, Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer, New York, 1987, pp. 75263.Google Scholar
[Hod93] Hodges, W., Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
[Hue79] Huebschmann, J., Cohomology theory of aspherical groups and of small cancellation groups, Journal of Pure and Applied Algebra, vol. 14 (1979), no. 2, pp. 137143.Google Scholar
[Jal01] Jaligot, E., Full Frobenius groups of finite Morley rank and the Feit-Thompson theorem, this Bulletin, vol. 7 (2001), no. 3, pp. 315328.Google Scholar
[JOH04] Jaligot, E. and Houcine, A. Ould, Existentially closed CSA-groups, Journal of Algebra, vol. 280 (2004), no. 2, pp. 772796.Google Scholar
[Mur07] Muranov, A. Yu., Finitely generated infinite simple groups of infinite commutator width, International Journal of Algebra and Compututation, vol. 17 (2007), no. 3, pp. 607659, arXiv.org preprint: math.GR/0608688.Google Scholar
[MR96] Myasnikov, A. G. and Remeslennikov, V. N., Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups, International Journal of Algebra and Computation, vol. 6 (1996), no. 6, pp. 687711.Google Scholar
[Ol91] Ol'shanskiĭ, A. Yu., Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), vol. 70, Kluwer, Dordrecht, 1991, translated from the 9 Russian original by Yu. A. Bakhturin.CrossRefGoogle Scholar
[OH07] Houcine, A. Ould, On superstable CSA-groups, to appear in Annals of Pure and Applied Logic, http://math.univ-lyon1.fr/~ould/, 2007.Google Scholar
[Poi85] Poizat, B., Cours de théorie des modèles, Bruno Poizat, Villeurbanne, 1985, Une introduction à la logique mathématique contemporaine. [An introduction to contemporary mathematical logic].Google Scholar
[Ros62] Rosenlicht, M., On a result of Baer, Proceedings of the American Mathematical Society, vol. 13 (1962), no. 1, pp. 99101.CrossRefGoogle Scholar
[Sel07] Sela, Z., Diophantine geometry over groups VIII: Stability, preprint: http://www.ma.huji.ac.il/~zlil/, 2007.Google Scholar
[She90] Shelah, S., Classification theory and the number of nonisomorphic models, second ed., North-Holland, Amsterdam, 1990.Google Scholar
[She96] Shelah, S., Toward classifying unstable theories, Annals of Pure and Applied Logic, vol. 80 (1996), no. 3, pp. 229255.Google Scholar
[SU06] Shelah, S. and Usvyatsov, A., Banach spaces and groups—order properties and universal models, Israel Journal of Mathematics, vol. 152 (2006), pp. 245270.Google Scholar
[Sta91] Stallings, J. R., Non-positively curved triangles of groups, Group theory from a geometrical viewpoint (Trieste, 1990), World Scientific Publishing, River Edge, NJ, 1991, pp. 491503.Google Scholar