Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:23:03.510Z Has data issue: false hasContentIssue false

Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age

Published online by Cambridge University Press:  09 March 2007

T. Frank*
Affiliation:
Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
B. Reichhart
Affiliation:
Zoological Institute, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
*
*Fax: +41 0316313188 E-mail: [email protected]

Abstract

Species richness and abundance of staphylinid and carabid beetles overwintering in winter wheat fields and 1- to 3-year-old wildflower areas were investigated during 2000/2001 on 16 study sites in Switzerland. Abundance and species richness of overwintering staphylinids significantly increased with successional age of the wildflower areas and were always higher in older wildflower areas than in winter wheat. A similar but less distinct pattern was observed for the abundance and species richness of carabid beetles. The influence of habitat parameters (vegetation cover, fine sand content, organic matter, pH, soil pore volume, surrounding landscape structure, habitat area) on the staphylinid and carabid assemblages based on the number of individuals per species and site was analysed using canonical correspondence analysis. Vegetation cover was the most significant parameter significantly characterizing both staphylinid and carabid assemblages. The amount of vegetation cover explained 15.7% of the variance, fine sand content accounted for 13.3% and surrounding landscape structure for 10.9% of the variance in the staphylinid assemblage. In the carabid assemblage, vegetation cover was the only significant factor, explaining 24.7% of the variance. This study showed for the first time that the significance of wildflower areas as a reservoir for hibernation for generalist predatory beetles increases with progressing successional age.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, M.A. & Letourneau, D.K. (1984) Vegetation diversity and insect pest outbreaks. CRC Critical Reviews in Plant Sciences 2, 131169.Google Scholar
Andersen, A., Hansen, A.G., Rydland, N. & Oyre, G. (1983) Carabidae and Staphylinidae (Coleoptera) as predators of eggs of the turnip root fly Delia floralis (Diptera, Anthomyiidae) in cage experiments. Journal of Applied Entomology 95, 499506.Google Scholar
Baker, A.N. & Dunning, R.A. (1975) Some effects of soil type and crop density on the activity and abundance of the epigeic fauna, particularly Carabidae, in sugar-beet fields. Journal of Applied Ecology 12, 809818.Google Scholar
Barone, M. & Frank, T. (2003) Habitat age increases reproduction and nutritional condition in a generalist arthropod predator. Oecologia 135, 7883.Google Scholar
Basedow, T. (1990) Effects of insecticides on Carabidae and the significance of these effects for agriculture and species number. pp. 115125in Stork, N.E. (Ed.) The role of ground beetles in ecological and environmental studies. Andover, Intercept.Google Scholar
Bohac, J. (1999) Staphylinid beetles as bioindicators. Agriculture Ecosystems and Environment 74, 357372.Google Scholar
Bohac, J., Jedlicka, P. & Frouz, J. (1999) Changes in communities of staphylinid beetles (Coleoptera, Staphylinidae) during secondary succession in abandoned fields. pp. 1925 in 5th Central European Workshop on Soil Zoology, 27–30 April 1999 Ceske Budejovice, Central European Workshop on Soil Zoology.Google Scholar
Brown, V.K. & Hyman, P.S. (1986) Successional communities of plants and phytophagous Coleoptera. Journal of Ecology 74, 963975.Google Scholar
Brown, V.K. & Southwood, T.R.E. (1987) Secondary succession: patterns and strategies. pp. 315337in Gray, A.J. & Edwards, D.J. (Eds) Colonization, succession and stability. Oxford, Blackwell.Google Scholar
Brucker, G. & Kalusche, D. (1976) Bodenbiologisches Praktikum. Heidelberg, Quelle & Meyer.Google Scholar
Bürki, H.M. & Hausammann, A. (1993) Überwinterung von Arthropoden im Boden und an Ackerkräutern künstlich angelegter Ackerkrautstreifen. Agrarökologie 7, 1158.Google Scholar
Coaker, T.H. & Williams, D.A. (1963) The importance of some Carabidae and Staphylinidae as predators of the cabbage root fly (Erioischa brassicae). Entomologia Experimentalis et Applicata 6, 156164.Google Scholar
Cohen, J. (1977) Statistical power analysis for the behavioral sciences. New York, Academic Press.Google Scholar
Collins, K.L., Boatman, N.D., Wilcox, A., Holland, J.M. & Chaney, K. (2002) Influence of beetle banks on cereal aphid predation in winter wheat. Agriculture Ecosystems and Environment 93, 337350.CrossRefGoogle Scholar
Collins, K.L., Boatman, N.D., Wilcox, A. & Holland, J.M. (2003) Effects of different grass treatments used to create overwintering habitat for predatory arthropods on arable farmland. Agriculture Ecosystems and Environment 96, 5967.Google Scholar
Coombes, D.S. & Sotherton, N.W. (1986) The dispersal and distribution of polyphagous predatory Coleoptera in cereals. Annals of Applied Biology 108, 461474.Google Scholar
Dennis, P., Thomas, M.B. & Sotherton, N.W. (1994) Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators. Journal of Applied Ecology 31, 361370.Google Scholar
Desender, K. & Alderweireldt, M. (1988) Population dynamics of adult and larval carabid beetles in a maize field and its boundary. Journal of Applied Entomology 106, 1319.Google Scholar
Desender, K.J., Maelfait, J.P., D'Hulster, M.D. & Vanherche, L. (1981) Ecological and faunal studies on Coleoptera in agricultural land. 1. Seasonal occurrence of Carabidae in the grassy edge of a pasture. Pedobiologia 22, 379384.CrossRefGoogle Scholar
D'Hulster, M. & Desender, K.J. (1984) Ecological and faunal studies of Coleoptera in agricultural land, IV. Hibernation of Staphylinidae in agro-ecosystems. Pedobiologia 26, 6573.CrossRefGoogle Scholar
Dunger, W. & Fiedler, H.J. (1997) Methoden der Bodenbiologie. Jena, Fischer.Google Scholar
Frank, T. (1998) Attractiveness of sown weed strips on hoverflies (Syrphidae, Diptera), butterflies (Rhopalocera, Lepidoptera), wild bees (Apoidea, Hymenoptera) and thread-waisted wasps (Sphecidae, Hymenoptera). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 71, 1120.Google Scholar
Frank, T. & Nentwig, W. (1995) Ground dwelling spiders (Araneae) in sown weed strips and adjacent fields. Acta Oecologica 16, 179193.Google Scholar
Freude, H., Harde, K.W. & Lohse, G.A. (1964) Die Käfer Mitteleuropas, Band 4. Krefeld, Goecke & Evers.Google Scholar
Freude, H., Harde, K.W. & Lohse, G.A. (1976) Die Käfer Mitteleuropas, Band 2. Krefeld, Goecke & Evers.Google Scholar
Good, J.A. & Giller, P.S. (1986) A contribution to a check-list of Staphylinidae (Coleoptera) of potential importance in the integrated protection of cereal and grass crops. pp. 8198 in Proceedings of a Meeting of the EC Experts’ Group, 25–27 November 1986 Littlehampton, UK, Integrated Crop Protection in Cereals.Google Scholar
Good, J.A. & Giller, P.S. (1991) The effect of cereal and grass management on staphylinid (Coleoptera) assemblages in south-west Ireland. Journal of Applied Ecology 28, 810826.CrossRefGoogle Scholar
Günter, M. (2000) Anlage und Pflege von mehrjährigen Buntbrachen unter den Rahmenbedingungen des schweizerischen Ackerbaugebietes. Agrarökologie 37, 1154.Google Scholar
Hengeveld, R. (1980) Food specialization in ground beetles: an ecological or a phylogenetic process? (Coleoptera, Carabidae). Netherlands Journal of Zoology 30, 585594.Google Scholar
Holopainen, J.K., Bergmann, T., Hautala, E.-L. & Oksanen, J. (1995) The ground beetle fauna (Coleoptera: Carabidae) in relation to soil properties and foliar fluoride content in spring cereals. Pedobiologia 39, 193206.CrossRefGoogle Scholar
Janetschek, H. (1982) Ökologische Feldmethoden. Stuttgart,Ulmer.Google Scholar
Jeanneret, P.Schüpbach, B., Lips, A., Harding, J., Steiger, J., Waldburger, M., Bigler, F. & Fried, P.M. (1999) Biodiversity patterns in cultivated landscapes: modelling and mapping with GIS and multivariate statistics. pp. 8594 in Proceedings of the eighth Annual Conference of the International Association for Landscape Ecology,6–8 September 1999Bristol, UK,International Association for Landscape Ecology.Google Scholar
Keller, S. (1994) Wozu ökologische Ausgleichsflächen? Landfreund 11, 711.Google Scholar
Koch, K. (1989) Die Käfer Mitteleuropas. Ökologie, Band 1. Krefeld, Goecke & Evers.Google Scholar
Kotze, D.J., O'Hara, R.B. (2003) Species decline–but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135, 138148.Google Scholar
Kromp, B. (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture Ecosystems and Environment 74, 187228.Google Scholar
Kuntze, H., Roeschmann, G. & Schwerdtfeger, G. (1988) Bodenkunde. Stuttgart, Ulmer.Google Scholar
Lohse, G.A. & Lucht, W.H. (1989) Die Käfer Mitteleuropas, 1. Supplementband. Krefeld, Goecke & Evers.Google Scholar
Lys, J.-A. (1994) The positive influence of strip-management on ground beetles in a cereal field: increase, migration, and overwintering. pp. 451455in Desender, K.J.et al. (Eds) Carabid beetles–ecology and evolution. Dordrecht, Kluwer.Google Scholar
Lys, J.-A. & Nentwig, W. (1994) Improvement of the overwintering sites for Carabidae, Staphylinidae and Araneae by strip-management in a cereal field. Pedobiologia 38, 238242.Google Scholar
Lys, J.-A., Zimmermann, M. & Nentwig, W. (1994) Increase in activity and species number of carabid beetles in cereals as a result of strip-management. Entomologia Experimentalis et Applicata 73, 19.Google Scholar
MacFadyen, A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30, 171184.Google Scholar
Mosimann, C. (2002) Diversity of ground beetles (Coleoptera: Carabidae) in relation to habitat age. Diploma thesis, University of Bern.Google Scholar
Nentwig, W. (2000) Die Bedeutung von streifenförmigen Strukturen in der Kulturlandschaft. pp. 140in Nentwig, W. (Ed.) Streifenförmige ökologische Ausgleichsflächen in der Kulturlandschaft. Bern, Verlag Agrarökologie.Google Scholar
Pfiffner, L. & Luka, H. (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agriculture Ecosystems and Environment 78, 215222.CrossRefGoogle Scholar
Purtauf, T., Wolters, V., Tscharntke, T., Schmidt, M. & Dauber, J. (2002) Landscape complexity and biodiversity of carabids in wheat fields. Verhandlungen der Gesellschaft für Ökologie 32, 34.Google Scholar
Ricketts, T.H., Daily, G.C., Ehrlich, P.R. & Fay, J.P. (2001) Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conservation Biology 15, 378388.Google Scholar
Schaefer, M. (1976) Experimentelle Untersuchungen zum Jahreszyklus und zur Überwinterung von Spinnen. Zoologisches Jahrbuch Systematik 103, 127289.Google Scholar
Siemann, E., Haarstad, J. & Tilman, D. (1999) Dynamics of plant and arthropod diversity during old field succession. Ecography 22, 406414.Google Scholar
Sotherton, N.W. (1984) The distribution and abundance of predatory arthropods overwintering on farmland. Annals of Applied Biology 105, 423429.Google Scholar
Sotherton, N.W. (1985) The distribution and abundance of predatory Coleoptera overwintering in field boundaries. Annals of Applied Biology 106, 1721.Google Scholar
SPSS (2003) SPSS for Windows. Statistics, version 11.5. Chicago, SPSS Incorporation.Google Scholar
Steffan-Dewenter, I.Münzenberg, U.Bürger, C., Thies., C. & Tscharntke, T. (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 14211432.CrossRefGoogle Scholar
Sunderland, K.D. & Vickerman, G.P. (1980) Aphid feeding by some polyphagous predators in relation to aphid density in cereal fields. Journal of Applied Ecology 17, 389396.Google Scholar
Symondson, W.O.C., Sunderland, K.D. & Greenstone, M.H. (2002) Can generalist predators be effective biocontrol agents? Annual Review of Entomology 47, 561594.Google Scholar
Ter Braak, C.J.F. & Smilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user's guide. Software for canonical community ordination (version 4.5). Wageningen and Ceske Budejovice, Biometris.Google Scholar
Thiele, H.U. (1977) Carabid beetles in their environments. Berlin, Springer.CrossRefGoogle Scholar
Thomas, M.B., Wratten, S.D. & Sotherton, N.W. (1991) Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and emigration. Journal of Applied Ecology 20, 906917.CrossRefGoogle Scholar
Thomas, M.B., Wratten, S.D. & Sotherton, N.W. (1992) Creation of ‘island’ habitats in farmland to manipulate populations of beneficial arthropods: predator densities and species composition. Journal of Applied Ecology 29, 524531.Google Scholar
Thomas, C.F.G., Parkinson, L., Griffiths, C.J.K., Fernandez, Garcia A. & Marshall, E.J.P. (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. Journal of Applied Ecology 38, 100116.Google Scholar
Tomlin, A.D., Miller, J.J., Harris, C.R. & Tolman, J.H. (1985) Arthropod parasitoids and predators of the onion maggot (Diptera: Anthomyiidae) in southwestern Ontario. Journal of Economic Entomology 78, 975981.Google Scholar
Topp, W. & Wiebke, T. (1980) Verteilung und Ausbreitung der epigäischen Arthropoden in der Agrarlandschaft, II. Staphylinoidea. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 53, 3336.Google Scholar
Wiedemeier, P. & Duelli, P. (1999) Ökologische Ausgleichsflächen und Nützlingsförderung. Agrarforschung 6, 265268.Google Scholar
Zangger, A., Lys, J.-A. & Nentwig, W. (1994) Increasing the availability of food and the reproduction of Poecilus cupreus in a cereal field by strip management. Entomologia Experimentalis et Applicata 71, 111120.Google Scholar