Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T05:01:48.902Z Has data issue: false hasContentIssue false

Influence of diet on the survival and wood consumption of Porotermes adamsoni (Froggatt) (Isoptera: Termopsidae) at different temperatures*

Published online by Cambridge University Press:  10 July 2009

M. Lenz
Affiliation:
CSIRO, Division of Entomology, Canberra, A.C.T. 2601., Australia
R. A. Barrett
Affiliation:
CSIRO, Division of Entomology, Canberra, A.C.T. 2601., Australia
E. R. Williams
Affiliation:
CSIRO, Division of Mathematics and Statistics, Canberra, A.C.T. 2601, Australia

Abstract

Survival and wood consumption were measured for laboratory groups of Porotermes adamsoni (Frogg.) maintained over a range of constant temperatures from 8 to 29°C. The termites were fed on sound blocks of Pinus radiata, Eucalyptus regnans, decayed E. ?viminalis, and outer (sound) and inner (decayed) heartwood of E. pauciflora. Above 21 °C, diet influenced the pattern of survival, wood consumption and wood consumption adjusted for survival, resulting in a significant temperature × timber interaction. In the upper range of the temperatures used, the termites survived in larger numbers or for longer periods on decayed than on sound wood and ate more of it. From the results, it is clear that difficulties arise when employing laboratory data to estimate feeding activity of termite populations in the field. Knowledge of the correlation between the performance of termites in laboratory groups with that of members of a field colony is still sparse.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. (1980). Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. (4). The role of termites in the process of wood decomposition in Pasoh Forest Reserve.—Revue Ecol. & Biol. Sol 17, 2340.Google Scholar
Alvey, N. G. et al. (1977). GENSTAT. A general statistical program.—Harpenden, Herts., Rothamsted Exp. Stn.Google Scholar
Bayne, B. L., Thompson, R. J. & Widdows, J. (1973). Some effects of temperature and food on the rate of oxygen consumption by Mytilus edulis L.—pp. 181193in Wieser, W. (Ed.). Effects of temperature on ectothermic organisms: ecological implications and mechanisms of compensation.—298 pp. Berlin, Springer.CrossRefGoogle Scholar
Becker, G. (1967). Die Temperatur-Abhängigkeit der Frasstätigkeit einiger Termitenarten.— Z. angew. Ent. 60, 97123.CrossRefGoogle Scholar
Becker, G. (1973). Aktivitätsschwankungen bei Termiten, ein Phänomen von grundsätzlicher biologischer Bedeutung.—Z. angew. Ent. 72, 273290.CrossRefGoogle Scholar
Becker, G. (1976 a). Influences of magnetic, electric, and gravity fields on termite activity.— Mater. & Org. Beihefte 3, 407418.Google Scholar
Becker, G. (1976 b). Physical, chemical and biological factors influencing the damage of wood and other materials by termites.—pp. 259271in Sharpley, J. M. & Kaplan, A. M. (Eds.). Proceedings of the Third International Biodegradation Symposium. Sessions II, VIII.—pp. 259329. London, Applied Science Publishers.Google Scholar
Becker, G. (1978). Temperatur-Optimum der Frassaktivität verschiedener Termiten-Arten.— Z. angew. Ent. 86, 225259.CrossRefGoogle Scholar
Becker, G. (1979 a). Einfluss örtlicher geomagnetischer und anderer physikalischer Bedingungen in einem Versuchsraum auf verschiedene Insekten.—Z. angew. Zool. 66, 391416.Google Scholar
Becker, G. (1979 b). Einfluss von elektrischen Feldern in Thermostaten und magnetischen Feldern in Klimaräumen auf Termiten.—Z. angew. Zool. 66, 463474.Google Scholar
Becker, G. & Lenz, M. (1975). Versuche über das Verhalten von Termiten gegenüber verschiedenen Basidiomyceten.—Z. angew. Ent. 78, 255279.CrossRefGoogle Scholar
Garcia, M. L. & Becker, G. (1975). Influence of temperature on the development of incipient colonies of Nasutitermes nigriceps (Haldemann).—Z. angew. Ent. 79, 291300.CrossRefGoogle Scholar
Greaves, T. (1964). Temperature studies of termite colonies in living trees.—Aust. J. Zool. 12, 250262.CrossRefGoogle Scholar
Haverty, M. I. & Nutting, W. L. (1974). Natural wood-consumption rates and survival of a dry-wood and a subterranean termite at constant temperatures.—Ann. ent. Soc. Am. 67, 153157.CrossRefGoogle Scholar
Haverty, M. I. & Nutting, W. L. (1975 a). A simulation of wood consumption by the subterranean termite, Heterotermes aureus (Snyder), in an Arizona desert grassland.— Insectes soc. 22, 93102.CrossRefGoogle Scholar
Haverty, M. I. & Nutting, W. L. (1975 b). Natural wood preferences of desert termites.— Ann. ent. Soc. Am. 68, 533536.CrossRefGoogle Scholar
Hoffmann, K. H. (1980). Anpassungen im Stoffwechsel von Insekten an tagesperiodische Wechseltemperaturen.—Verh. dt. zool. Ges. 73, 214227.Google Scholar
House, H. L. (1966). Effects and interactions of varied levels of temperature, amino acids, and a vitamin on the rate of larval development in the fly Pseudosarcophaga affinis.—J. Insect Physiol. 12, 14931501.CrossRefGoogle Scholar
House, H. L. (1972). Inversion in the order of food superiority between temperatures effected by nutrient balance in the fly larva Agria housei (Diptera: Sarcophagidae).— Can. Ent. 104, 15591564.CrossRefGoogle Scholar
Howick, C. D. & Creffield, J. W. (1979). A comparison of three species of Nasutitermes (Isoptera: Termitidae) as termites for laboratory bioassays.—Int. Biodeterior. Bull. 15, 105112.Google Scholar
Lee, K. E. & Wood, T. G. (1971). Physical and chemical effects on soil of some Australian termites, and their pedological significance.—Pedobiologia 11, 376409.CrossRefGoogle Scholar
Lenz, M. & Williams, E. R. (1980). Influence of container, matrix volume and group size on survival and feeding activity in species of Coptotermes and Nasutitermes (Isoptera: Rhinotermitidae, Termitidae).—Mater. & Org. 15, 2546.Google Scholar
Mannesmann, R. (1973). Comparison of twenty-one commercial wood species from North America in relation to feeding rates of the Formosan termite, Coptotermes formosanus Shiraki.—Mater. & Org. 8, 107120.Google Scholar
Marsden, I. D. (1973). The influence of starvation on temperature relationships of metabolism in ectotherms.—pp. 165172in Wieser, W. (Ed.). Effects of temperature on ectothermic organisms: ecological implications and mechanisms of compensation.—298 pp. Berlin, Springer.CrossRefGoogle Scholar
Ratcliffe, F. N., Gay, F. J. & Greaves, T. (1952). Australian termites. The biology, recognition, and economic importance of the common species.—124 pp. Melbourne, Commonw. Scient. Ind. Res. Orgn.Google Scholar
Remmert, H. (1974). Über die Bedeutung der Nahrung für Wachstum und Entwicklung von Tieren.—Verh. Ges. Ökol. 3, 5564.Google Scholar
Ruyooka, D. B. A. (1978). Fungal-termite associations in the natural resistance of selected eucalypt timbers.—Ph.D. thesis, Australian National University.Google Scholar
Ruyooka, D. B. A. & Griffin, D. M. (1980). Variation in the natural resistance of timber. II. Effect of wood-rotting fungi on the natural resistance of selected eucalypt timbers under laboratory conditions.—Mater. & Org. 15, 195205.Google Scholar
Wieser, W. (1973). Temperature relations of ectotherms: a speculative review.—pp. 123in Wieser, W. (Ed.). Effects of temperature on ectothermic organisms: ecological implications and mechanisms of compensation.—298 pp. Berlin, Springer.CrossRefGoogle Scholar
Wood, T. G. (1978). Food and feeding habits of termites.—pp. 5580in Brian, M. V. (Ed.). Production ecology of ants and termites.—409 pp. Cambridge, Univ. Press (International Biological Programme Vol. 13).Google Scholar